【題目】如圖,△ABC中,ADBC邊上的中線,EF為直線AD上的點,連接BE,CF,且BECF

1)求證:DEDF;

2)若在原有條件基礎(chǔ)上再添加ABAC,你還能得出什么結(jié)論.(不用證明)(寫2個)

【答案】(1)見詳解;(2)ADBC,∠BAD=∠CAD

【解析】

(1)ADABC的中線就可以得出BD=CD,再由平行線的性質(zhì)就可以得出CDFBDE,就可以得出DE=DF;

(2)根據(jù)等腰三角形三線合一即可寫出結(jié)論.

1)證明:∵AD是△ABC的中線,

BDCD,

BECF,

∴∠FCD=∠EBD,∠DFC=∠DEB,

在△CDF和△BDE中,

,

∴△CDF≌△BDEAAS),

DEDF

2)可以得出ADBC,∠BAD=∠CAD.(理由等腰三角形三線合一).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,將△ABC在平面內(nèi)繞點A逆時針旋轉(zhuǎn)50角后得到△AB′C′的位置,若此時恰有CC′∥AB,則∠CAB′的度數(shù)為( )

A.15°
B.40°
C.50°
D.65°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】仔細觀察圖形,認真分析下列各式,然后解答問題.

OA=()2+1=2,S1;

OA=()2+1=3,S2;

OA=()2+1=4,S3;

求:(1)請用含有n(n是正整數(shù))的等式表示上述變化規(guī)律;

(2)推算出OA10的長;

(3)求出S+S+S+…+S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有大小兩種貨車,已知1輛大貨車與3輛小貨車一次可以運貨14噸,2輛大貨車與5輛小貨車一次可以運貨25噸.

11輛大貨車與1輛小貨車一次可以運貨各多少噸?

21輛大貨車一次費用為300元,1輛小貨車一次費用為200元,要求兩種貨車共用10輛,兩次完成80噸的運貨任務(wù),且總費用不超過5400元,有哪幾種用車方案?請指出費用最低的一種方案,并求出相應(yīng)的費用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系 中,已知直線 )分別交反比例函數(shù) 在第一象限的圖象于點 ,過點 軸于點 ,交 的圖象于點 ,連結(jié) .若 是等腰三角形,則 的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:小明遇到這樣一個問題;△ABC中,有兩個內(nèi)角相等.

①若∠A110°,求∠B的度數(shù);

②若∠A40°,求∠B的度數(shù).

小明通過探究發(fā)現(xiàn),∠A的度數(shù)不同,∠B的度數(shù)的個數(shù)也可能不同,因此為同學(xué)們提供了如下解題的想法:

對于問題①,根據(jù)三角形內(nèi)角和定理,∵∠A110°>90°,∠B=∠C35°;

對于問題②,根據(jù)三角形內(nèi)角和定理,∵∠A40°<90°,∴∠A=∠B或∠A=∠C或∠B=∠C,∴∠B的度數(shù)可求.請回答:

1)問題②中∠B的度數(shù)為   ;

2)參考小明解決問題的思路,解決下面問題:

ABC中,有兩個內(nèi)角相等.設(shè)∠Ax°,當(dāng)∠B有三個不同的度數(shù)時,求∠B的度數(shù)(用含x的代式表示)以及x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若x1 , x2(x1<x2)是方程(x﹣a)(x﹣b)=﹣1(a<b)的兩根,則實數(shù)x1 , x2 , a,b的大小關(guān)系是( )
A.a<x1<x2<b
B.x1<a<x2<b
C.x1<a<b<x2
D.x1<x2<a<b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我市“精準扶貧”工作中,甲、乙兩個工程隊先后接力為扶貧村莊修建一條210米長的公路,甲隊每天修建15米,乙隊每天修建25米,一共用10天完成.

根據(jù)題意,小紅和小芳同學(xué)分別列出了下面尚不完整的方程組:

小紅:小芳:

1)請你分別寫出小紅和小芳所列方程組中未知數(shù)xy表示的意義:

小紅:x表示______,y表示______

小芳:x表示______,y表示______

2)在題中“( 。眱(nèi)把小紅和小芳所列方程組補充完整;

3)甲工程隊一共修建了______天,乙工程隊一共修建了______米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

1)小亮遇到這樣問題:如圖1,已知ABCD,EOF是直線AB、CD間的一條折線.判斷∠O、∠BEO、∠DFO三個角之間的數(shù)量關(guān)系.小亮通過思考發(fā)現(xiàn):過點OOPAB,通過構(gòu)造內(nèi)錯角,可使問題得到解決.

請回答:∠O、∠BEO、∠DFO三個角之間的數(shù)量關(guān)系是 

參考小亮思考問題的方法,解決問題:

2)如圖2,將△ABC沿BA方向平移到△DEFB、DE共線),∠B50°,ACDF相交于點G,GPEP分別平分∠CGF、∠DEF相交于點P,求∠P的度數(shù);

3)如圖3,直線mn,點B、F在直線m上,點E、C在直線n上,連接FE并延長至點A,連接BABCCA,做∠CBF和∠CEF的平分線交于點M,若∠ADCα,則∠M  (直接用含α的式子表示).

查看答案和解析>>

同步練習(xí)冊答案