【題目】如圖,,的平分線與的平分線交于點(diǎn),則的度數(shù)是________

【答案】

【解析】

過點(diǎn)EEGAB,過點(diǎn)FFPAB,根據(jù)平行線的性質(zhì)可得∠ABE+BEG=180°,∠GED+EDC=180°,根據(jù)角的計(jì)算以及角平分線的定義可得∠FBE+EDF=(∠ABE+CDE),再依據(jù)∠ABF=BFP,∠CDF=DFP結(jié)合角的計(jì)算即可得出結(jié)論.

解:如圖,過點(diǎn)EEGAB,過點(diǎn)FFPAB,


ABCD
ABCDGEFP
∴∠ABE+BEG=180°,∠GED+EDC=180°,
∴∠ABE+CDE+BED=360°;
又∵∠BED=60°,
∴∠ABE+CDE=300°
∵∠ABE和∠CDE的平分線相交于F,
∴∠ABF+CDF=(∠ABE+CDE=150°,

FPABABCD,
ABCDFP,

∴∠ABF=BFP,∠CDF=DFP
∴∠BFD=BFP+DFP=ABF+CDF =150°
故答案為:150°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖的轉(zhuǎn)盤被劃分成六個(gè)相同大小的扇形,并分別標(biāo)上12,3,4,5,6這六個(gè)數(shù)字,指針停在每個(gè)扇形的可能性相等。四位同學(xué)各自發(fā)表了下述見解:

甲:如果指針前三次都停在了3號(hào)扇形,下次就一定不會(huì)停在3號(hào)扇形;

乙:只要指針連續(xù)轉(zhuǎn)六次,一定會(huì)有一次停在6號(hào)扇形;

丙:指針停在奇數(shù)號(hào)扇形的概率與停在偶數(shù)號(hào)扇形的概率相等;

丁:運(yùn)氣好的時(shí)候,只要在轉(zhuǎn)動(dòng)前默默想好讓指針停在6號(hào)扇形,指針停在6號(hào)扇形的可能性就會(huì)加大。

其中,你認(rèn)為正確的見解有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的個(gè)數(shù)是( )

是完全平方式,則k=3

工程建筑中經(jīng)常采用三角形的結(jié)構(gòu),這是利用三角形具有穩(wěn)定性的性質(zhì)

在三角形內(nèi)部到三邊距離相等的點(diǎn)是三個(gè)內(nèi)角平分線的交點(diǎn)

當(dāng)時(shí)

若點(diǎn)P∠AOB內(nèi)部,DE分別在∠AOB的兩條邊上,PD=PE,則點(diǎn)P∠AOB的平分線上

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來交通事故發(fā)生率逐年上升,交通問題成為重大民生問題,鄱陽二中數(shù)學(xué)興趣小組為檢測(cè)汽車的速度設(shè)計(jì)了如下實(shí)驗(yàn)如圖在公路MN近似看作直線旁選取一點(diǎn)C,測(cè)得C到公路的距離為30再在MN上選取A、B兩點(diǎn)測(cè)得CAN=30°,CBN=60°

1AB的長(zhǎng);(精確到0.1,參考數(shù)據(jù)=1.41, =1.73

2若本路段汽車限定速度為40千米/小時(shí),某車從AB用時(shí)3該車是否超速?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ACBC,ACB90°,過點(diǎn)CCDAB于點(diǎn)D,點(diǎn)EAB邊上一動(dòng)點(diǎn)(不含端點(diǎn)A,B),連接CE,過點(diǎn)BCE的垂線交直線CE于點(diǎn)F,交直線CD于點(diǎn)G

(1)求證:AECG

(2)若點(diǎn)E運(yùn)動(dòng)到線段BD上時(shí)(如圖②),試猜想AECG的數(shù)量關(guān)系是否發(fā)生變化,請(qǐng)證明你的結(jié)論;

(3)過點(diǎn)AAHCE,垂足為點(diǎn)H,并交CD的延長(zhǎng)線于點(diǎn)M(如圖③),找出圖中與BE相等的線段,直接寫出答案BE=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:通過小學(xué)的學(xué)習(xí)我們知道,分?jǐn)?shù)可分為“真分?jǐn)?shù)”和“假分?jǐn)?shù)”.而假分?jǐn)?shù)都可化為帶分?jǐn)?shù),如:.我們定義:在分式中,對(duì)于只含有一個(gè)字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時(shí),我們稱之為“假分式”;當(dāng)分子的次數(shù)小于分母的次數(shù)時(shí),我們稱之為“真分式”.如:,這樣的分式就是假分式;再如:,這樣的分式就是真分式.類似的,假分式也可以化為帶分式(即:整式與真分式的和的形式).如:;再如:

解決下列問題:

1)分式_____分式(填“真分式”或“假分式”);

2)把假分式化為帶分式的形式(寫出過程);

3)如果分式的值為整數(shù),那么的整數(shù)值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線CD⊥AB于點(diǎn)O,∠EOF=90°,射線OP平分∠COF.

(1)如圖1,∠EOF在直線CD的右側(cè):

①若∠COE=30°,求∠BOF和∠POE的度數(shù);

②請(qǐng)判斷∠POE與∠BOP之間存在怎樣的數(shù)量關(guān)系?并說明理由.

(2)如圖2,∠EOF在直線CD的左側(cè),且點(diǎn)E在點(diǎn)F的下方:

①請(qǐng)直接寫出∠POE與∠BOP之間的數(shù)量關(guān)系;

②請(qǐng)直接寫出∠POE與∠DOP之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(8,6),C(0,10)AC=CO,直線ACx軸于點(diǎn)M,將△AOC沿直線AC翻折,使得點(diǎn)O落在點(diǎn)B處,連接ABx軸于D,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以2個(gè)單位長(zhǎng)度/秒的速度沿射線OA運(yùn)動(dòng);同時(shí)動(dòng)點(diǎn)QA出發(fā)以每秒1個(gè)單位的速度沿射線AB運(yùn)動(dòng)。

(1)B點(diǎn)的坐標(biāo);

(2)連接PB,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,△PAB的面積為S,求St的關(guān)系式,并直接寫t的取值范圍;

(3)在點(diǎn)P、Q運(yùn)動(dòng)過程中,當(dāng)t為何值時(shí),△APQ是以PQ為底邊的等腰三角形?并直接寫出Q點(diǎn)坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)、、分別在、上,且,,下面寫出了說明的過程,請(qǐng)?zhí)羁眨?/span>

_______,________.________________________

___________,(________________________

___________,(________________________

.(等量代換)

(平角定義)

(等量代換)

查看答案和解析>>

同步練習(xí)冊(cè)答案