【題目】已知二次函數(shù)y=ax2的圖象經(jīng)過(guò)點(diǎn)(2,1).
(1)求二次函數(shù)y=ax2的解析式;
(2)一次函數(shù)y=mx+4的圖象與二次函數(shù)y=ax2的圖象交于點(diǎn)A(x1、y1)、B(x2、y2)兩點(diǎn).
①當(dāng)m=時(shí)(圖①),求證:△AOB為直角三角形;
②試判斷當(dāng)m≠時(shí)(圖②),△AOB的形狀,并證明; n>S扇形DOE求得即可.
(3)根據(jù)第2問,說(shuō)出一條你能得到的結(jié)論.(不要求證明)
【答案】
(1)
【解答】(1)解:∵y=ax2過(guò)點(diǎn)(2,1),
∴1=4a,解得a=,
∴拋物線解析式為y=x2;
(2)
①證明:
當(dāng)m=時(shí),聯(lián)立直線和拋物線解析式可得,解得或,
∴A(﹣2,1),B(8,16),
分別過(guò)A、B作AC⊥x軸,BD⊥x軸,垂足分別為C、D,如圖1,
∴AC=1,OC=2,OD=8,BD=16,
∴,且∠ACO=∠ODB,
∴△ACO∽△ODB,
∴∠AOC=∠OBD,
又∵∠OBD+∠BOD=90°,
∴∠AOC+∠BOD=90°,即∠AOB=90°,
∴△AOB為直角三角形;
②解:△AOB為直角三角形.
證明如下:
當(dāng)m≠時(shí),聯(lián)立直線和拋物線解析式可得,解得或,
∴A(2m﹣2,(m﹣)2),B(2m+2,(m+)2),
分別過(guò)A、B作AC⊥x軸,BD⊥x軸,如圖2,
∴AC=(m﹣)2,OC=﹣(2m﹣2),BD=(m+)2,OD=2m+2,
∴,且∠ACO=∠ODB,
∴△ACO∽△OBD,
∴∠AOC=∠OBD,
又∵∠OBD+∠BOD=90°,
∴∠AOC+∠BOD=90°,即∠AOB=90°,
∴△AOB為直角三角形;
(3)
解:由2可知,一次函數(shù)y=mx+4的圖象與二次函數(shù)y=ax2的交點(diǎn)為A、B,則△AOB恒為直角三角形.(答案不唯一).
【解析】(1)把點(diǎn)(2,1)代入可求得a的值,可求得拋物線的解析式;
(2)①可先求得A、B兩點(diǎn)的坐標(biāo),過(guò)A、B兩點(diǎn)作x軸的垂線,結(jié)合條件可證明△ACO∽△ODB,可證明∠AOB=90°,可判定△AOB為直角三角形;②可用m分別表示出A、B兩點(diǎn)的坐標(biāo),過(guò)A、B兩點(diǎn)作x軸的垂線,表示出AC、BD的長(zhǎng),可證明△ACO∽△ODB,結(jié)合條件可得到∠AOB=90°,可判定△AOB為直角三角形;
(3)結(jié)合(2)的過(guò)程可得到△AOB恒為直角三角形等結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某次知識(shí)競(jìng)賽有20道必答題,每一題答對(duì)得10分,答錯(cuò)或不答都扣5分;3道搶答題,每一題搶答對(duì)得10分,搶答錯(cuò)扣20分,搶答不到不得分也不扣分.甲乙兩隊(duì)決賽,甲隊(duì)必答題得了170分,乙隊(duì)必答題只答錯(cuò)了1題.
(1)甲隊(duì)必答題答對(duì)答錯(cuò)各多少題?
(2)搶答賽中,乙隊(duì)搶答對(duì)了第1題,又搶到了第2題,但還沒作答時(shí),甲隊(duì)啦啦隊(duì)隊(duì)員小黃說(shuō):“我們甲隊(duì)輸了!”小汪說(shuō):“小黃的話不一定對(duì)!”請(qǐng)你舉一例說(shuō)明“小黃的話”有何不對(duì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A(m,6)、B(n,1)在反比例函數(shù)圖象上,AD⊥x軸于點(diǎn)D,BC⊥x軸于點(diǎn)C,DC=5.
(1)求m、n的值并寫出該反比例函數(shù)的解析式.
(2)點(diǎn)E在線段CD上,S△ABE=10,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AC為直徑作⊙O交BC于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線,交AB于點(diǎn)E,交CA的延長(zhǎng)線于點(diǎn)F.
(1)求證:FE⊥AB;
(2)當(dāng)EF=6,時(shí),求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了參加中考體育測(cè)試,甲、乙、丙三位同學(xué)進(jìn)行足球傳球訓(xùn)練,球從一個(gè)人腳下隨機(jī)傳到另一個(gè)人腳下,且每位傳球人傳給其余兩人的機(jī)會(huì)是均等的,由甲開始傳球,共傳球三次.
(1)請(qǐng)利用樹狀圖列舉出三次傳球的所有可能情況;
(2)求三次傳球后,球回到甲腳下的概率;
(3)三次傳球后,球回到甲腳下的概率大還是傳到乙腳下的概率大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中點(diǎn),E是邊AD上的動(dòng)點(diǎn),EG的延長(zhǎng)線與BC的延長(zhǎng)線交于點(diǎn)F,連結(jié)CE,DF.
(1)求證:四邊形CEDF是平行四邊形;
(2)①當(dāng)AE= cm時(shí),四邊形CEDF是矩形;
②當(dāng)AE= cm時(shí),四邊形CEDF是菱形.
(直接寫出答案,不需要說(shuō)明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB與CE交于F,ED與AB,BC,分別交于M,H.
(1)求證:CF=CH;
(2)如圖2,△ABC不動(dòng),將△EDC繞點(diǎn)C旋轉(zhuǎn)到∠BCE=45°時(shí),試判斷四邊形ACDM是什么四邊形?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】
(1)(1)如圖1是某個(gè)多面體的表面展開圖.
①請(qǐng)你寫出這個(gè)多面體的名稱,并指出圖中哪三個(gè)字母表示多面體的同一點(diǎn);
②如果沿BC、GH將展開圖剪成三塊,恰好拼成一個(gè)矩形,那么△BMC應(yīng)滿足什么條件?(不必說(shuō)理)
(2)如果將一個(gè)三棱柱的表面展開圖剪成四塊,恰好拼成一個(gè)三角形,如圖2,那么該三棱柱的側(cè)面積與表面積的比值是多少?為什么?(注:以上剪拼中所有接縫均忽略不計(jì))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】尺規(guī)作圖特有的魅力曾使無(wú)數(shù)人沉湎其中,連當(dāng)年叱咤風(fēng)云的拿破侖也不例外,我們可以只用圓規(guī)將圓等分.例如可將圓6等分,如圖只需在⊙O上任取點(diǎn)A,從點(diǎn)A開始,以⊙O的半徑為半徑,在⊙O上依次截取點(diǎn)B,C,D,E,F(xiàn).從而點(diǎn)A,B,C,D,E,F(xiàn)把⊙O六等分.下列可以只用圓規(guī)等分的是( ) ①兩等分 ②三等分 ③四等分 ④五等分.
A.②
B.①②
C.①②③
D.①②③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com