(2012•赤峰)如圖所示,在△ABC中,∠ABC=∠ACB.
(1)尺規(guī)作圖:過頂點A作△ABC的角平分線AD;(不寫作法,保留作圖痕跡)
(2)在AD上任取一點E,連接BE、CE.求證:△ABE≌△ACE.
分析:(1)以A為圓心,以任意長為比較畫弧,分別交AB和AC于一點,分別以這兩點為圓心,以大于這兩點之間的距離為半徑畫弧,兩弧交于一點,過這點和A作射線,交BC于D,則,AD為所求;
(2)推出∠BAE=∠CAE,根據(jù)SAS證△BAE和△CAE全等即可.
解答:(1)解:如圖所示:

(2)證明:∵AD是△ABC的角平分線,
∴∠BAD=∠CAD,
∵∠ABC=∠ACB,
∴AB=AC,
∵在△ABE和△ACE中
AB=AC
∠BAE=∠CAE
AE=AE

∴△ABE≌△ACE(SAS).
點評:本題考查了等腰三角形的判定,全等三角形的判定,作圖-基本作圖的應(yīng)用,主要考查學(xué)生的動手操作能力和推理能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•赤峰)如圖,等腰梯形ABCD中,AD∥BC,以點C為圓心,CD為半徑的弧與BC交于點E,四邊形ABED是平行四邊形,AB=3,則扇形CDE(陰影部分)的面積是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•赤峰)如圖,在菱形ABCD中,BD為對角線,E、F分別是DC、DB的中點,若EF=6,則菱形ABCD的周長是
48
48

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•赤峰)如圖,王強同學(xué)在甲樓樓頂A處測得對面乙樓樓頂D處的仰角為30°,在甲樓樓底B處測得乙樓樓頂D處的仰角為45°,已知甲樓高26米,求乙樓的高度.(
3
≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•赤峰)如圖,拋物線y=x2-bx-5與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,點C與點F關(guān)于拋物線的對稱軸對稱,直線AF交y軸于點E,|OC|:|OA|=5:1.
(1)求拋物線的解析式;
(2)求直線AF的解析式;
(3)在直線AF上是否存在點P,使△CFP是直角三角形?若存在,求出P點坐標;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案