關(guān)于x的多項(xiàng)式-3x4-(a-6)x3+(
1
2
a-7)x2
-
1
3
x+a-1
不含三次項(xiàng),則二次項(xiàng)系數(shù)是
 
,常數(shù)項(xiàng)是
 
分析:根據(jù)該多項(xiàng)式不含三次項(xiàng),令三次項(xiàng)系數(shù)為0,求出a的值,進(jìn)而用代入法求出二次項(xiàng)系數(shù)和常數(shù)項(xiàng).
解答:解:∵多項(xiàng)式不含三次項(xiàng),∴-(a-6)=0,解得a=6,
把a(bǔ)=6代入
1
2
a-7得:
1
2
a-7=
1
2
×6-7=-4,
把a(bǔ)=6代入a-1得:a-1=6-1=5.
答:二次項(xiàng)系數(shù)是-4,常數(shù)項(xiàng)是5.
點(diǎn)評(píng):由于此類(lèi)題目是多項(xiàng)式和方程相結(jié)合,故本題需要先弄清二次項(xiàng)系數(shù)、三次項(xiàng)系數(shù)以及常數(shù)項(xiàng)的符號(hào),然后解方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

歷史上的數(shù)學(xué)巨人歐拉最先把關(guān)于x的多項(xiàng)式用記號(hào)f(x)來(lái)表示,例如f(x)=x2+3x-5,把x=某數(shù)時(shí)多項(xiàng)式的值用f(某數(shù))來(lái)表示,例如x=1時(shí)多項(xiàng)式x2+3x-5的值記為f(1)=12+3×1-5=-1.
(1)已知g(x)=-2x2-3x+1,分別求出g(-1)和g(-2)的值.
(2)已知h(x)=ax3+2x2-x-14,h(
12
)=a
,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的多項(xiàng)式3x2+x+m因式分解以后有一個(gè)因式為(3x-2),試求m的值并將多項(xiàng)式因式分解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、歷史上的數(shù)學(xué)巨人歐拉最先把關(guān)于x的多項(xiàng)式用記號(hào)f(x)來(lái)表示.例如f(x)=x2+3x-5,把x=某數(shù)時(shí)多項(xiàng)式的值用f(某數(shù))來(lái)表示.例如x=-1時(shí)多項(xiàng)式x2+3x-5的值記為f(-1)=(-1)2+3×(-1)-5=-7.已知g(x)=-2x2-3x+1,分別求出g(-1)和g(-2)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x、y的多項(xiàng)式3x|m|y2+(m+2)x2y-4是四次三項(xiàng)式,則m的值為
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:同步題 題型:解答題

已知關(guān)于x的多項(xiàng)式3x +(m+1) x3-5x-(n-2)x2+1不含x的二次項(xiàng)和三次項(xiàng),求(mn)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案