【題目】已知拋物線Fyx2+bx+c的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn)O,且與x軸另一交點(diǎn)為(,0).

1)求拋物線F的解析式;

2)如圖1,直線lyx+mm0)與拋物線F相交于點(diǎn)Ax1,y1)和點(diǎn)Bx2y2)(點(diǎn)A在第二象限),求y2y1的值(用含m的式子表示);

3)在(2)中,若m,設(shè)點(diǎn)A′是點(diǎn)A關(guān)于原點(diǎn)O的對(duì)稱點(diǎn),如圖2

判斷AAB的形狀,并說(shuō)明理由;

平面內(nèi)是否存在點(diǎn)P,使得以點(diǎn)AB、A′、P為頂點(diǎn)的四邊形是菱形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】1yx2x;(2y2y1m0);(3)①等邊三角形;②點(diǎn)P的坐標(biāo)為(2)、()和(,﹣2).

【解析】

(1) 根據(jù)點(diǎn)的坐標(biāo),利用待定系數(shù)法即可求出拋物線的解析式;

(2) 將直線l的解析式代入拋物線F的解析式中, 可求出x1x2的值, 利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出y1、y2的值, 做差后即可得出y2-y1的值;

(3) 根據(jù)m的值可得出點(diǎn)A、B的坐標(biāo), 利用對(duì)稱性求出點(diǎn)A′的坐標(biāo)

①分別求出AB、AA′、A′B的值, 由三者相等即可得出△AA′B為等邊三角形;

②根據(jù)等邊三角形的性質(zhì)結(jié)合菱形的性質(zhì), 可得出存在符合題意得點(diǎn)P,設(shè)點(diǎn)P的坐標(biāo)為(x,y),分AB為對(duì)角線或AB為對(duì)角線或AA′為對(duì)角線三種情況分別討論即可得.

(1)∵拋物線yx2+bx+c的圖象經(jīng)過(guò)點(diǎn)(0,0)(,0),

,解得:,

∴拋物線F的解析式為yx2x;

(2)yx+m代入yx2x,得:x2m,

解得:x1,x2

y1m,y2m

y2y1(m)(m)(m0);

(3)m,∴點(diǎn)A的坐標(biāo)為(),點(diǎn)B的坐標(biāo)為(2),

∵點(diǎn)A′是點(diǎn)A關(guān)于原點(diǎn)O的對(duì)稱點(diǎn),∴點(diǎn)A′的坐標(biāo)為();

①△AA′B為等邊三角形,理由如下:

A(),B(,2),A′(),

∴AA′= ,

AB= ,

A′B= ,

∴AA′=AB=A′B,

∴△AA′B為等邊三角形;

②∵△AA′B為等邊三角形,

∴存在符合題意的點(diǎn)P,且以點(diǎn)A、B、A′、P為頂點(diǎn)的菱形分三種情況,

設(shè)點(diǎn)P的坐標(biāo)為(xy)

(i)當(dāng)A′B為對(duì)角線時(shí),有,解得:,

∴點(diǎn)P的坐標(biāo)為(2)

(ii)當(dāng)AB為對(duì)角線時(shí),有,解得:,

∴點(diǎn)P的坐標(biāo)為()

(iii)當(dāng)AA′為對(duì)角線時(shí),有,解得:,

∴點(diǎn)P的坐標(biāo)為(,﹣2)

綜上所述:平面內(nèi)存在點(diǎn)P,使得以點(diǎn)A、B、A′、P為頂點(diǎn)的四邊形是菱形,點(diǎn)P的坐標(biāo)為(2)、()(,﹣2)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+3與拋物線交于A、B兩點(diǎn),點(diǎn)Ax軸上,點(diǎn)B的橫坐標(biāo)為.動(dòng)點(diǎn)P在拋物線上運(yùn)動(dòng)(不與點(diǎn)A、B重合),過(guò)點(diǎn)Py軸的平行線,交直線AB于點(diǎn)Q.當(dāng)PQ不與y軸重合時(shí),以PQ為邊作正方形PQMN,使MNy軸在PQ的同側(cè),連結(jié)PM.設(shè)點(diǎn)P的橫坐標(biāo)為m

1)求b、c的值.

2)當(dāng)點(diǎn)N落在直線AB上時(shí),直接寫(xiě)出m的取值范圍.

3)當(dāng)點(diǎn)PA、B兩點(diǎn)之間的拋物線上運(yùn)動(dòng)時(shí),設(shè)正方形PQMN的周長(zhǎng)為C,求Cm之間的函數(shù)關(guān)系式,并寫(xiě)出Cm增大而增大時(shí)m的取值范圍.

4)當(dāng)PQM與坐標(biāo)軸有2個(gè)公共點(diǎn)時(shí),直接寫(xiě)出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“每天鍛煉一小時(shí),健康生活一輩子”.為了選拔“陽(yáng)光大課間”領(lǐng)操員,學(xué)校組織初中三個(gè)年級(jí)推選出來(lái)的15名領(lǐng)操員進(jìn)行比賽,成績(jī)?nèi)缦卤恚?/span>

成績(jī)/分

7

8

9

10

人數(shù)/人

2

5

4

4

(1)這組數(shù)據(jù)的眾數(shù)是多少,中位數(shù)是多少.

(2)已知獲得2018年四川省南充市的選手中,七、八、九年級(jí)分別有1人、2人、1人,學(xué)校準(zhǔn)備從中隨機(jī)抽取兩人領(lǐng)操,求恰好抽到八年級(jí)兩名領(lǐng)操員的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系內(nèi),以原點(diǎn)O為圓心,1為半徑作圓,點(diǎn)P在直線上運(yùn)動(dòng),過(guò)點(diǎn)P作該圓的一條切線,切點(diǎn)為A,則PA的最小值為  

A. 3 B. 2 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某反比例函數(shù)圖象的一支經(jīng)過(guò)點(diǎn)A2,3)和點(diǎn)B(點(diǎn)B在點(diǎn)A的右側(cè)),作BCy軸,垂足為點(diǎn)C,連結(jié)ABAC

1)求該反比例函數(shù)的解析式;

2)若ABC的面積為6,求直線AB的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)你畫(huà)出一個(gè)以BC為底邊的等腰ΔABC,使底邊上的高AD=BC

1)求tanBsinB的值;

2)在你所畫(huà)的等腰ΔABC中設(shè)底邊BC=5米,求腰上的高BE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(如圖,將邊長(zhǎng)為4cm的正方形紙片ABCD沿EF折疊(點(diǎn)EF分別在邊AB、CD),使點(diǎn)B落在AD邊上的點(diǎn) M處,點(diǎn)C落在點(diǎn)N處,MNCD交于點(diǎn)P, 連接EP

如圖,若MAD邊的中點(diǎn),①△AEM的周長(zhǎng)=_________cm;求證:EP=AE+DP;

隨著落點(diǎn)MAD邊上取遍所有的位置(點(diǎn)M不與AD重合),△PDM的周長(zhǎng)是否發(fā)生變化?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是小西“過(guò)直線外一點(diǎn)作這條直線的垂線”的尺規(guī)作圖過(guò)程.

已知:直線l及直線l外一點(diǎn)P.

求作:直線PQ,使得PQl.

做法:如圖,

①在直線l的異側(cè)取一點(diǎn)K,以點(diǎn)P為圓心,PK長(zhǎng)為半徑畫(huà)弧,交直線l于點(diǎn)A,B;

②分別以點(diǎn)A,B為圓心,大于AB的同樣長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)Q(P點(diǎn)不重合);

③作直線PQ,則直線PQ就是所求作的直線.

根據(jù)小西設(shè)計(jì)的尺規(guī)作圖過(guò)程,

(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

(2)完成下面的證明.

證明:∵PA= ,QA= ,

PQl( )(填推理的依據(jù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是學(xué)習(xí)分式方程應(yīng)用時(shí),老師板書(shū)的問(wèn)題和兩名同學(xué)所列的方程.

根據(jù)以上信息,解答下列問(wèn)題.

(1)冰冰同學(xué)所列方程中的x表示什么,慶慶同學(xué)所列方程中的y表示什么;

(2)兩個(gè)方程中任選一個(gè),并寫(xiě)出它的等量關(guān)系;

(3)解(2)中你所選擇的方程,并回答老師提出的問(wèn)題.

查看答案和解析>>

同步練習(xí)冊(cè)答案