【題目】將正面分別寫著數(shù)字,136的四張卡片(卡片除數(shù)字外,其它都相同)洗勻后,背面向上放在桌子上,從中先隨機(jī)抽取一張卡片,記下卡片上的數(shù)字,不放回,再從中任取一張卡片,記下數(shù)字.

1)請(qǐng)用列表或畫樹狀圖法(樹狀圖也稱樹形圖)中的一種方法,列出所有可能出現(xiàn)的結(jié)果;

2)請(qǐng)計(jì)算兩次摸出的卡片上的數(shù)字之和大于4的概率.

【答案】(1)見解析;(2).

【解析】

1)根據(jù)題意畫出樹狀圖即可,注意不放回這一前提;

2)根據(jù)(1)中情況找出和大于4的組合,然后除以總的可能數(shù)即可得出相關(guān)概率.

(1)畫樹狀圖(樹形圖)如下圖:

∴所有可能出現(xiàn)的結(jié)果共有12種,分別為:,,,,,,,,

2)由樹狀圖可知,共有12種等可能的情況,其中兩次摸出的卡片上的數(shù)字之和大于4的情況有4種,即,,

P(兩次摸出的卡片上的數(shù)字之和大于4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)yx+4的圖象與反比例函數(shù)y(k為常數(shù)且k0)的圖象交于A(1,a),B兩點(diǎn),與x軸交于點(diǎn)C

(1)a,k的值及點(diǎn)B的坐標(biāo);

(2)若點(diǎn)Px軸上,且SACPSBOC,直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(04)為圓心,半徑為4的圓交y軸正半軸于點(diǎn)A,AB是⊙C的切線.動(dòng)點(diǎn)P從點(diǎn)A開始沿AB方向以每秒1個(gè)單位長度的速度運(yùn)動(dòng),點(diǎn)QO點(diǎn)開始沿x軸正方向以每秒4個(gè)單位長度的速度運(yùn)動(dòng),且動(dòng)點(diǎn)P、Q從點(diǎn)A和點(diǎn)O同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t()

1)當(dāng)t1時(shí),得到P1、Q1,求經(jīng)過AP1、Q1三點(diǎn)的拋物線解析式及對(duì)稱軸l;

2)當(dāng)t為何值時(shí),直線PQ與⊙C相切?并寫出此時(shí)點(diǎn)P和點(diǎn)Q的坐標(biāo);

3)在(2)的條件下,拋物線對(duì)稱軸l上存在一點(diǎn)N,使NPNQ最小,求出點(diǎn)N的坐標(biāo)并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線bc為常數(shù))與x軸交于點(diǎn),與y軸交于點(diǎn)A,點(diǎn)E為拋物線頂點(diǎn)。

(Ⅰ)當(dāng)時(shí),求點(diǎn)A,點(diǎn)E的坐標(biāo);

(Ⅱ)若頂點(diǎn)E在直線上,當(dāng)點(diǎn)A位置最高時(shí),求拋物線的解析式;

(Ⅲ)若,當(dāng)滿足值最小時(shí),求b的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以線段AB為直徑的⊙O上取一點(diǎn),連接AC、BC.ABC沿AB翻折后得到ABD.

(1)試說明點(diǎn)D在⊙O上;

(2)在線段AD的延長線上取一點(diǎn)E,使AB2=AC·AE.求證:BE為⊙O的切線;

(3)在(2)的條件下,分別延長線段AE、CB相交于點(diǎn)F,若BC=2,AC=4,求線段EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A,點(diǎn)C在反比例函數(shù)yk0x0)的圖象上,ABx軸于點(diǎn)B,OCAB于點(diǎn)D,若CDOD,則AODBCD的面積比為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在EFG中,∠EFG90°,EFFG,且點(diǎn)EF分別在矩形ABCD的邊AB,AD上.

1)如圖1,當(dāng)點(diǎn)GCD上時(shí),求證:AEF≌△DFG;

2)如圖2,若FAD的中點(diǎn),FGCD相交于點(diǎn)N,連接EN,求證:ENAE+DN;

3)如圖3,若AEAD,EGFG分別交CD于點(diǎn)M,N,求證:MG2MNMD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),拋物線與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根.

其中正確結(jié)論的個(gè)數(shù)是(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過兩點(diǎn)并與軸的另一個(gè)交點(diǎn)為,且.

1)求拋物線的解析式;

2)點(diǎn)為直線上方對(duì)稱軸右側(cè)拋物線上一點(diǎn),當(dāng)的面積為時(shí),求點(diǎn)的坐標(biāo);

3)在(2)的條件下,連接,作軸于,連接、,點(diǎn)為線段上一點(diǎn),點(diǎn)為線段上一點(diǎn),滿足,過點(diǎn)軸于點(diǎn),連接,當(dāng)時(shí),求的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案