【題目】如圖,在平行四邊形ABCD中,AB=4,∠BAD的平分線與BC的延長線交于點(diǎn)E,與DC交于點(diǎn)F,且點(diǎn)F為邊DC的中點(diǎn),DG⊥AE,垂足為G,若DG=1,則AE的邊長為( ).
A.2 B.4 C.4 D.8
【答案】B.
【解析】
試題分析:由AE為角平分線,得到一對角相等,再由ABCD為平行四邊形,得到AD與BE平行,利用兩直線平行內(nèi)錯(cuò)角相等得到一對角相等,等量代換及等角對等邊得到AD=DF,由F為DC中點(diǎn),AB=CD,求出AD與DF的長,得出三角形ADF為等腰三角形,根據(jù)三線合一得到G為AF中點(diǎn),在直角三角形ADG中,由AD與DG的長,利用勾股定理求出AG的長,進(jìn)而求出AF的長,再由三角形ADF與三角形ECF全等,得出AF=EF,即可求出AE的長.∵AE為∠DAB的平分線,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F為DC的中點(diǎn),∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根據(jù)勾股定理得:AG=,則AF=2AG=2,∵平行四邊形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,則AE=2AF=4.故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從分別標(biāo)有數(shù)﹣3,﹣2,﹣1,0,1,2,3的七張沒有明顯差別的卡片中,隨機(jī)抽取一張,所抽卡片上的數(shù)的絕對值不是正數(shù)的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABN和△ACM位置如圖所示,AB=AC,AD=AE,∠1=∠2.
(1)求證:BD=CE;
(2)求證:∠M=∠N.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】彈簧掛上物體后會(huì)伸長,測得一彈簧的長度y(cm)與所掛重物的質(zhì)量x(kg)有下面的關(guān)系,那么彈簧總長y(cm)與所掛重物x(kg)之間的關(guān)系式為( )
A. y=x+12 B. y=0.5x+12
C. y=0.5x+10 D. y=x+10.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是明明設(shè)計(jì)的智力拼圖玩具的一部分,現(xiàn)在明明遇到了兩個(gè)問題,請你幫助解決:
問題1:∠D=32°,∠ACD=60°,為保證AB∥DE,則∠A等于多少度?
問題2:∠G,∠GFH,∠H之間有什么樣的關(guān)系時(shí),GP∥HQ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】提出命題:如圖,在四邊形ABCD中,∠A=∠C,∠ABC=∠ADC,求證:四邊形ABCD是平行四邊形.
小明提供了如下解答過程:
證明:連接BD.
∵∠1+∠3=180-∠A,∠2+∠4=180―∠C,∠A=∠C,
∴ ∠1+∠3=∠2+∠4.
∵∠ABC=∠ADC,
∴∠1=∠4,∠2=∠3.
∴AB∥CD,AD∥BC.
∴四邊形ABCD是平行四邊形(兩組對邊分別平行的四邊形是平行四邊形).
反思交流:(1)請問小明的解法正確嗎?如果有錯(cuò),說明錯(cuò)在何處,并給出正確的證明過程.
(2)用語言敘述上述命題:___________________________________________________.
運(yùn)用探究:(3)下列條件中,能確定四邊形ABCD是平行四邊形的是(_____)
A. ∠A∶∠B∶∠C∶∠D=1∶2∶3∶4 B. ∠A∶∠B∶∠C∶∠D=1∶3∶1∶3
C. ∠A∶∠B∶∠C∶∠D=2∶3∶3∶2 D. ∠A∶∠B∶∠C∶∠D=1∶1∶3∶3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)A(a,a+5)在x軸上,則點(diǎn)A到原點(diǎn)的距離為( )
A.﹣5B.0C.5D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AD=2AB=4,E是AD的中點(diǎn),一塊足夠大的三角板的直角頂點(diǎn)與點(diǎn)E重合,將三角板繞點(diǎn)E旋轉(zhuǎn),三角板的兩直角邊分別交AB,BC(或它們的延長線)于點(diǎn)M,N.
(1)觀察圖1,直接寫出∠AEM與∠BNE的關(guān)系是;(不用證明)
(2)如圖1,當(dāng)M、N都分別在AB、BC上時(shí),可探究出BN與AM的關(guān)系為:;(不用證明)
(3)如圖2,當(dāng)M、N都分別在AB、BC的延長線上時(shí),(2)中BN與AM的關(guān)系式是否仍然成立?若成立,請說明理由:若不成立,寫出你認(rèn)為成立的結(jié)論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中, ,點(diǎn)是直線上一點(diǎn)(不與重合),以為一邊在 的右側(cè)作,使,連接.
(1)如圖1,當(dāng)點(diǎn)在線段上,如果,則 度;
(2)設(shè), .
①如圖2,當(dāng)點(diǎn)在線段上移動(dòng),則之間有怎樣的數(shù)量關(guān)系?請說明理由;
②當(dāng)點(diǎn)在直線上移動(dòng),則之間有怎樣的數(shù)量關(guān)系?請畫出圖形并直接寫出相應(yīng)的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com