已知AB是圓O的切線,切點(diǎn)為B,直線AO交圓O于C、D兩點(diǎn),CD=2,∠DAB=30°,動(dòng)點(diǎn)P在直線AB上運(yùn)動(dòng),PC交圓O于另一點(diǎn)Q.
(1)當(dāng)點(diǎn)P運(yùn)動(dòng)到使Q、C兩點(diǎn)重合時(shí)(如圖1),求AP的長(zhǎng);
(2)點(diǎn)P在運(yùn)動(dòng)過(guò)程中,有幾個(gè)位置(幾種情況)使△CQD的面積為?(直接寫出答案)
(3)當(dāng)△CQD的面積為,且Q位于以CD為直徑的上半圓,CQ>QD時(shí)(如圖2),求AP的長(zhǎng).
解:(1)∵AB與⊙O相切于點(diǎn)B,∴∠ABO=90°.
∵∠DAB=30°,OB=CD=×2=1,
∴AO=2OB=2,AC=AO﹣CO=2﹣1=1.
當(dāng)Q、C兩點(diǎn)重合時(shí),CP與⊙O相切于點(diǎn)C,如圖1,
則有∠ACP=90°,
∴cos∠CAP===,
解得AP=;
(2)有4個(gè)位置使△CQD的面積為.
提示:設(shè)點(diǎn)Q到CD的距離為h,
∵S△CQD=CD•h=×2×h=,
∴h=.
由于h=<1,結(jié)合圖2可得:
有4個(gè)位置使△CQD的面積為;
(3)過(guò)點(diǎn)Q作QN⊥CD于N,過(guò)點(diǎn)P作PM⊥CD于M,如圖3.
∵S△CQD=CD•QN=×2×QN=,∴QN=.
∵CD是⊙O的直徑,QN⊥CD,
∴∠CQD=∠QND=∠QNC=90°,
∴∠CQN=90°﹣∠NQD=∠NDQ,
∴△QNC∽△DNQ,
∴=,
∴QN2=CN•DN,
設(shè)CN=x,則有=x(2﹣x),
整理得4x2﹣8x+1=0,
解得:x1=,x2=.
∵CQ>QD,∴x=,
∴=2+.
∵QN⊥CD,PM⊥CD,
∴∠PMC=∠QNC=90°.
∵∠MCP=∠NCQ,
∴△PMC∽△QNC,
∴==2+,
∴MC=(2+)MP.
在Rt△AMP中,
tan∠MAP==tan30°=,
∴AM=MP.
∵AC=AM+MC=MP+(2+)MP=1,
∴MP=,
∴AP=2MP=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,某校數(shù)學(xué)興趣小組為測(cè)得大廈AB的高度,在大廈前的平地上選擇一點(diǎn)C,測(cè)得大廈頂端A的仰角為30°,再向大廈方向前進(jìn)80米,到達(dá)點(diǎn)D處(C、D、B三點(diǎn)在同一直線上),又測(cè)得大廈頂端A的仰角為45°,請(qǐng)你計(jì)算該大廈的高度.(精確到0.1米,參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,利用一面墻(墻的長(zhǎng)度不超過(guò)45米),用80米長(zhǎng)的籬笆圍成一共矩形場(chǎng)地
(1)若圍成的矩形場(chǎng)地的面積為750m2,求矩形ABCD的長(zhǎng)BC;
(2)能否使圍成的矩形場(chǎng)地的面積為810m2?為什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com