【題目】如圖,矩形在平面直角坐標(biāo)系內(nèi),其中點(diǎn),點(diǎn),點(diǎn)和點(diǎn)分別位于線段上,將沿對(duì)折,恰好能使點(diǎn)與點(diǎn)重合.若軸上有一點(diǎn),能使為等腰三角形,則點(diǎn)的坐標(biāo)為___________

【答案】

【解析】

首先根據(jù)矩形和對(duì)折的性質(zhì)得出AC、AB、BC、AD,然后利用△ADE∽△ABC,得出AE,分類討論即可得出點(diǎn)P坐標(biāo).

∵矩形,,

OA=BC=2OC=AB=4

由對(duì)折的性質(zhì),得△ADE是直角三角形,AD=CD=AC=∠ADE=∠ABC=90°,∠DAE=BAC

∴△ADE∽△ABC

,即

軸上有一點(diǎn),使為等腰三角形,

當(dāng)點(diǎn)P在點(diǎn)A左側(cè)時(shí),如圖所示:

∴點(diǎn)P坐標(biāo)為;

當(dāng)點(diǎn)P在點(diǎn)A右側(cè)時(shí),如圖所示:

∴點(diǎn)P坐標(biāo)為;

綜上,點(diǎn)P的坐標(biāo)是

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2+bx+c的對(duì)稱軸為x=2,且過點(diǎn)C(0,3)

(1)求此拋物線的解析式;

(2)證明:該拋物線恒在直線y=﹣2x+1上方.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小軍的爸爸和小慧的爸爸都是出租車司機(jī),他們?cè)诿刻斓陌滋、夜間都要到同一加油站各加一次油.白天和夜間的油價(jià)不同,有時(shí)白天高,有時(shí)夜間高,但不管價(jià)格如何變化,他們兩人采用固定的加油方式:小軍的爸爸不論是白天還是夜間每次總是加油,小慧的爸爸則不論是白天還是夜間每次總是花元錢加油.假設(shè)某天白天油的價(jià)格為每升元,夜間油的價(jià)格為每升元.

問:(1)小軍的爸爸和小慧的爸爸在這天加油的平均單價(jià)各是多少?

2)誰的加油方式更合算?請(qǐng)你通過數(shù)學(xué)運(yùn)算,給以解釋說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:

商店經(jīng)營有A、B兩種品牌的筆,A種筆的單價(jià)比B種筆的單價(jià)貴2元,若花140A種筆,120元買B種筆,則A種筆反而比B種筆少一支.

1)求A、B兩種品牌的筆每支各多少元.

2)某單位準(zhǔn)備一次性購買兩種筆共200支,預(yù)計(jì)費(fèi)用不超過1800元.并且規(guī)定,A種筆的數(shù)量不能少于B種筆的.問如何購買,單位花錢最少?最少花多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某小學(xué)演講大賽選拔賽初賽中,甲、乙、丙三位評(píng)委對(duì)小選手的綜合表現(xiàn),分別給出待定(用字母W表示)或通過(用字母P表示)的結(jié)論.

(1)請(qǐng)用樹狀圖表示出三位評(píng)委給小選手琪琪的所有可能的結(jié)論;

(2)對(duì)于小選手琪琪,只有甲、乙兩位評(píng)委給出相同結(jié)論的概率是多少?

(3)比賽規(guī)定,三位評(píng)委中至少有兩位給出通過的結(jié)論,則小選手可入圍進(jìn)入復(fù)賽,問琪琪進(jìn)入復(fù)賽的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鄭州市自2019121日起推行垃圾分類,廣大市民對(duì)垃圾桶的需求劇增.為滿足市場需求,某超市花了7900元購進(jìn)大小不同的兩種垃圾桶共800個(gè),其中,大桶和小桶的進(jìn)價(jià)及售價(jià)如表所示.

大桶

小桶

進(jìn)價(jià)(元/個(gè))

18

5

售價(jià)(元/個(gè))

20

8

1)該超市購進(jìn)大桶和小桶各多少個(gè)?

2)當(dāng)小桶售出了300個(gè)后,商家決定將剩下的小桶的售價(jià)降低1元銷售,并把其中一定數(shù)量的小桶作為贈(zèng)品,在顧客購買大桶時(shí),買一贈(zèng)一(買一個(gè)大桶送一個(gè)小桶),送完即止.

請(qǐng)問:超市要使這批垃圾桶售完后獲得的利潤為1550元,那么小桶作為贈(zèng)品送出多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,EDC邊上的點(diǎn),連接BE,將△BCE繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)90°得到△DCF,連接EF.若∠EFD=15°,則∠CDF的度數(shù)為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為邊長不變的等腰直角三角形,,,在外取一點(diǎn),以為直角頂點(diǎn)作等腰直角,其中內(nèi)部,,,當(dāng)E、P、D三點(diǎn)共線時(shí),

下列結(jié)論:

EP、D共線時(shí),點(diǎn)到直線的距離為;

E、PD共線時(shí),

;

④作點(diǎn)關(guān)于的對(duì)稱點(diǎn),在繞點(diǎn)旋轉(zhuǎn)的過程中,的最小值為

繞點(diǎn)旋轉(zhuǎn),當(dāng)點(diǎn)落在上,當(dāng)點(diǎn)落在上時(shí),取上一點(diǎn),使得,連接,則

其中正確結(jié)論的序號(hào)是___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)開展了手機(jī)伴我健康行主題活動(dòng).他們隨機(jī)抽取部分學(xué)生進(jìn)行手機(jī)使用目的每周使用手機(jī)時(shí)間的問卷調(diào)查,并繪制成如圖的統(tǒng)計(jì)圖。已知查資料人人數(shù)是40人。

請(qǐng)你根據(jù)以上信息解答以下問題

1)在扇形統(tǒng)計(jì)圖中,玩游戲對(duì)應(yīng)的圓心角度數(shù)是_______________

2)補(bǔ)全條形統(tǒng)計(jì)圖

3)該校共有學(xué)生1200人,估計(jì)每周使用手機(jī)時(shí)間在2小時(shí)以上(不含2小時(shí))的人數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案