【題目】已知B港口位于A觀測點的東北方向,且其到A觀測點正北方向的距離BD的長為16千米,一艘貨輪從B港口以48千米/時的速度沿如圖所示的BC方向航行,15分后到達(dá)C處,現(xiàn)測得C處位于A觀測點北偏東75°方向,求此時貨輪與A觀測點之間的距離AC的長(精確大0.1千米)(參考數(shù)據(jù):1.41,1.73,2.24,≈2.45)
【答案】此時貨輪與A觀測點之間的距離AC約為15.7km.
【解析】試題分析:根據(jù)在Rt△ADB中,sin∠DAB=,得出AB的長,進(jìn)而得出tan∠BAH= ,求出BH的長,即可得出AH以及CH的長,進(jìn)而得出答案.
試題解析:
BC=48×=12,
在Rt△ADB中,sin∠DAB==,
∴AB= = ,
如圖,過點B作BH⊥AC,交AC的延長線于H,
在Rt△AHB中,∠BAH=∠DAC-∠DAB=75°-45°=30°,
tan∠BAH==,
∴AH=BH,
BH2+AH2=AB2,BH2+(BH)2=(16)2,∴BH=8,∴AH=8,
在Rt△BCH中,BH2+CH2=BC2,∴CH=4,
∴AC=AH-CH=8-4≈15.7km,
答:此時貨輪與A觀測點之間的距離AC約為15.7km.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 Rt△ABC 中,∠C=90°,∠A=60°,AB=10cm,若點M 從點 B 出發(fā)以 2cm/s 的速度向點 A 運(yùn)動,點 N 從點 A 出發(fā)以 1cm/s 的速度向點 C 運(yùn)動,設(shè) M、N 分別從點 B、A 同時出發(fā),運(yùn)動的時間為 ts.
(1)用含 t 的式子表示線段 AM、AN 的長;
(2)當(dāng) t 為何值時,△AMN 是以 MN 為底邊的等腰三角形?
(3)當(dāng) t 為何值時,MN∥BC?并求出此時 CN 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在12×10的正方形網(wǎng)格中,△ABC是格點三角形,點B的坐標(biāo)為(﹣5,1),點C的坐標(biāo)為(﹣4,5).
(1)請在方格紙中畫出x軸、y軸,并標(biāo)出原點O;
(2)畫出△ABC關(guān)于直線l對稱的△A1B1C1;
(3)若點P(a,b)在△ABC內(nèi),其關(guān)于直線l的對稱點是P1,則P1的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB為⊙O的直徑,C,D是⊙O直徑AB異側(cè)的兩點,AC=DC,過點C與⊙O相切的直線CF交弦DB的延長線于點E.
(1)試判斷直線DE與CF的位置關(guān)系,并說明理由;
(2)若∠A=30°,AB=4,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,則下列結(jié)論:①DE=DF;②AD平分∠BAC;③AE=AD;④AC﹣AB=2BE中正確的是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一塊等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽內(nèi),三個頂點A,B,C分別落在凹槽內(nèi)壁上,已知∠ADE=∠BED=90°,測得AD=5cm,BE=7cm,求該三角形零件的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,城市規(guī)劃部門計劃在城市廣場的一塊長方形空地上修建乙面積為1500m2的停車場,將停車場四周余下的空地修建成同樣寬的通道,已知長方形空地的長為60m,寬為40m.
(1)求通道的寬度;
(2)某公司承攬了修建停車場的工程(不考慮修通道),為了盡量減少施工對城市交通的影響,實施施工時,每天的工作效率比原計劃增加了20%,結(jié)果提前2天完成任務(wù),求該公司原計劃每天修建多少m2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料,并解答問題.
材料:將分式拆分成一個整式與一個分式(分子為整數(shù))的和的形式.
解析:
由分母為,可設(shè)
則
對應(yīng)任意x,上述等式均成立,,,.
.
這樣,分式被拆分成了一個整式與一個分式的和.
解答:
(1)將分式拆分成一個整式與一個分式(分子為整數(shù))的和的形式.
(2)當(dāng)時,直接寫出________,的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,假分?jǐn)?shù)可以化為整數(shù)與真分?jǐn)?shù)的和的形式.例如:,在分式中,對于只含有一個字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時,我們稱之為“假分式”;當(dāng)分子的次數(shù)小于分母的次數(shù)時,我們稱之為“真分式”.例如:像,,這樣的分式是假分式;像,,這樣的分式是真分式.類似的,假分式也可以化為整數(shù)與真分式的和的形式.
例如:;
;
或
(1)分式是 分式(填“真”或“假”)
(2)將分式化為整式與真分式的和的形式;
(3)如果分式的值為整數(shù),求的整數(shù)值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com