【題目】如圖,△ABC是等腰直角三角形,∠ACB=90°,AC=BC=6,D在線段BC上,E是線段AD的一點(diǎn).現(xiàn)以CE為直角邊,C為直角頂點(diǎn),在CE的下方作等腰直角△ECF,連接BF.
(1)如圖1,求證:AE=BF;
(2)當(dāng)A、E、F三點(diǎn)共線時(shí),如圖2,若BF=2,求AF的長(zhǎng);
(3)如圖3,若∠BAD=15°,連接DF,當(dāng)E運(yùn)動(dòng)到使得∠ACE=30°時(shí),求△DEF的面積.
【答案】(1)見解析;(2)AF=2;(3)S△EDF=3﹣3.
【解析】
(1)如圖1中,證明△ACE≌△BCF(SAS)即可解決問題;
(2)利用全等三角形的性質(zhì),證明∠ACD=∠DFB=90°,再利用勾股定理即可解決問題;
(3)如圖3中,作FH⊥BC于H.證明△BCF是底角為30°的等腰三角形,求出CF,FB,FH,根據(jù)S△EDF=S△ECD+S△CDF-S△ECF計(jì)算即可.
(1)證明:如圖1中,
∵△ACB,△ECF都是等腰三角形,
∴CA=CB,CE=CF,∠ACB=∠ECF=90°,
∴∠ACE=∠BCF,
∴△ACE≌△BCF(SAS),
∴AE=BF.
(2)如圖2中,
∵CA=CB=6,∠ACB=90°,
∴AB=6,
∵△ACE≌△BCF,
∴∠CAD=∠DBF,
∵∠ADC=∠BDF,
∴∠ACD=∠DFB=90°,
∴AF===2.
(3)如圖3中,作FH⊥BC于H.
∵∠ACE=∠CAE=30°,
∴AE=EC,
∵△ACE≌△BCF,
∴BF=AE,CF=CE,
∴CF=BF,∠FCB=∠CBF=30°,
∵FC=FB,FH⊥BC,
∴CH=BH=3,FH=,CF=BF=2,
∵∠CED=∠CAE+∠ACE=60°,∠ECD=90°﹣30°=60°,
∴△ECD是等邊三角形,
∴EC=CF=CD=2,
∴S△EDF=S△ECD+S△CDF﹣S△ECF=×(2)2+×2×﹣×2×2=3﹣3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC與BD相交于點(diǎn)O,∠D=∠C,添加下列哪個(gè)條件后,仍不能使△ADO≌△BCO的是( )
A. AD=BC B. AC=BD C. OD=OC D. ∠ABD=∠BAC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】建立適當(dāng)?shù)淖鴺?biāo)系,運(yùn)用函數(shù)知識(shí)解決下面的問題:
如圖,是某條河上的一座拋物線形拱橋,拱橋頂部點(diǎn)E到橋下水面的距離EF為3米時(shí),水面寬AB為6米,一場(chǎng)大雨過后,河水上漲,水面寬度變?yōu)?/span>CD,且CD=2米,此時(shí)水位上升了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)不等的正方形依次排列,每個(gè)正方形都有一個(gè)頂點(diǎn)落在一三象限角平分線上,從左向右第3個(gè)正方形中的一個(gè)頂點(diǎn)A的坐標(biāo)為(8,4),陰影三角形部分的面積從左向右依次記為S1、S2、S3、…、Sn,則第4個(gè)正方形的邊長(zhǎng)是__,Sn的值為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△OAB的直角頂點(diǎn)A在x軸的正半軸上,若頂點(diǎn)B的縱坐標(biāo)為2,∠B=60°,OC=AC.
(1)請(qǐng)寫出A、B、C三點(diǎn)的坐標(biāo);
(2)點(diǎn)P是斜邊OB上的一個(gè)動(dòng)點(diǎn),則△PAC的周長(zhǎng)的最小值為多少?
(3)若點(diǎn)P是OB的中點(diǎn),點(diǎn)E在AO邊上,將△OPE沿PE翻折,使得點(diǎn)O落在O'處,當(dāng)O'E⊥AC時(shí),在坐標(biāo)平面內(nèi)是否存在一點(diǎn)Q,使得△BAQ≌△O′PE,若存在,請(qǐng)直接寫出Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,過點(diǎn)O作EF∥BC交AB于E,交AC于F,過點(diǎn)O作OD⊥AC于D,下列四個(gè)結(jié)論:
①EF=BE+CF;
②∠BOC=90°+∠A;
③點(diǎn)O到△ABC各邊的距離相等;
④設(shè)OD=m,AE+AF=n,則.
其中正確的結(jié)論是____.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,CA=CB,CD=CE,∠ACB=∠DCE=α.
(1)求證:BE=AD;
(2)當(dāng)α=90°時(shí),取AD,BE的中點(diǎn)分別為點(diǎn)P、Q,連接CP,CQ,PQ,如圖②,判斷△CPQ的形狀,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的圖象(折線)描述了一輛汽車在某一直線上的行駛過程中,汽車離出發(fā)地的距離(千米)與行駛時(shí)間(時(shí))之間的函數(shù)關(guān)系,根據(jù)圖中提供的信息,給出下列說法:①汽車共行駛了140千米;②汽車在行駛途中停留了1小時(shí);③汽車在整個(gè)行駛過程中的平均速度為30千米/時(shí);④汽車出發(fā)后6小時(shí)至9小時(shí)之間行駛的速度在逐漸減小.其中正確的說法共有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖已知:E是∠AOB的平分線上一點(diǎn),EC⊥OA,ED⊥OB,垂足分別為C、D.求證:
(1)∠ECD=∠EDC;
(2)OE是CD的垂直平分線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com