精英家教網 > 初中數學 > 題目詳情
如圖,己知二次函數y=-
1
2
x2+4x-6的圖象與x軸、y軸分別交于點A、B兩點.
(1)求A,B兩點的坐標;
(2)設該二次函數的對稱軸與x軸交于點C,連結BA、BC,求△ABC的面積.
(1)把y=0代入y=-
1
2
x2+4x-6得:-
1
2
x2+4x-6=0.
解得x1=2,x2=6.
由圖可得A(2,0)
把x=0代入y=-
1
2
x2+4x-6,得到y(tǒng)=-6,
∴B(0,-6)
∴A(2,0),B(0,-6);

(2)∵該拋物線對稱軸為直線x=-
4
2×(-
1
2
)

∴點C的坐標為(4,0)
∴AC=OC-OA=4-2=2
∴S△ABC=
1
2
AC•OB=
1
2
×2×6=6.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:填空題

為解決藥價虛高給老百姓帶來的求醫(yī)難的問題,國家決定對某藥品分兩次降價.若設平均每次降價的百分率為x,該藥品的原價是m元,降價后的價格是y元,則y與x的函數關系式______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:如圖,以A為頂點的拋物線交y軸于點B.
(1)求這個拋物線的解析式;
(2)求出這個拋物線與x軸的交點坐標;
(3)求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

有一座拋物線形拱橋,正常水位時橋下水面寬度為20米,拱頂距離水面4米.設正常水位時橋下的水深為2米,為保證過往船只順利航行,橋下水面的寬度不得小于18米,則水深超過______米時就會影響過往船只在橋下的順利航行.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知拋物線y=x2+px+q與x軸交于A、B兩點,且過點(-1,-1),設線段AB的長為d.
(1)用含有p的式子表示q.
(2)求d2與p的關系式.
(3)當p為何值時,d2取得最小值,并求出最小值.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,要設計一個等腰梯形的花壇,花壇上底長120米,下底長180米,上下底相距80米,在兩腰中點連線(虛線)處有一條橫向通道,上下底之間有兩條縱向通道,各通道的寬度相等.設通道的寬為x米.
(1)用含x的式子表示橫向通道的面積;
(2)當三條通道的面積是梯形面積的八分之一時,求通道的寬;
(3)根據設計的要求,通道的寬不能超過8米.如果修建通道的總費用(萬元)與通道的寬度成正比例關系,比例系數是5.5,花壇其余部分的綠化費用為每平方米0.02萬元,那么當通道的寬度為多少米時,所建花壇的總費用最少?最少費用是多少萬元?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

是否存在這樣的實數k,使得二次方程x2+(2k-1)x-(3k+2)=0有兩個實數根,且兩根都在2與4之間?如果有,試確定k的取值范圍;如果沒有,試述理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知拋物線y=x2+3x與x軸交于A、B兩點,在x軸上方的拋物線上存在一點P,使△PAB的面積等于3,
(1)求A、B兩點的坐標;
(2)求出點P的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖某拋物線的圖象,頂點坐標為(3,-2),圖象與x軸的一個交點為(1,0),則圖象與x軸的另一個交點的坐標為______.

查看答案和解析>>

同步練習冊答案