【題目】成都市第十三次黨代會提出實施東進戰(zhàn)略,推動了城市發(fā)展格局千年之變成都龍泉山城市森林公園借東進之風,聚全市之力,著力打造一個令世界向往的城市中心,如圖為成都市龍泉山城市豪林公園三個景點A,B,C的平面示意圖,景點CB的正北方向5千米處,景點AB的東北方向,在C的北偏東75°方向上.

1)∠BAC的大小

2)求景點A,C的距離(1.4141.732,sin75°≈0.966cos75°≈0.259,tan75°≈3.732,結果精確到0.1

【答案】(1)30°;(2)40.3千米

【解析】

1)由三角形的外角性質即可得出結果;

2)作CDABD,如圖所示:則∠CDB=∠CDA90°,在RtBCD中,BC5,∠B45°,得出△BCD是等腰直角三角形,得出BDCD,在RtACD中,∠A30°,得出AC2CD,即可得出答案.

解:(1)由三角形的外角性質得:∠BAC75°45°30°;

2)作CDABD,如圖所示:則∠CDB=∠CDA90°,

RtBCD中,BC5,∠B45°,

∴△BCD是等腰直角三角形,

BDCD,

RtACD中,∠A30°,

AC2CD5≈5×1.414≈40.3(千米);

答:景點A,C的距離約為40.3千米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC的頂點A,C落在坐標軸上,且頂點B的坐標為(﹣5,2),將ABC沿x軸向右平移得到A1B1C1,使得點B1恰好落在函數(shù)y上,若線段AC掃過的面積為48,則點C1的坐標為( 。

A.3,2B.5,6C.8,6D.6,6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AD平分∠BAC,按如下步作圖:①分別以點AD為圓心,以大于AD的長為半徑在AD兩側作弧,兩弧交于兩點MN;②作直線MN分別交ABAC于點E,F;③連接DE,DF,若BD6,AE4CD3,則CF的長是( 。

A.1B.1.5C.2D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某汽車制造廠開發(fā)一款新式電動汽車,計劃一年生產(chǎn)安裝240輛。由于抽調不出足夠的熟練工來完成新式電動汽車的安裝,工廠決定招聘一些新工人.他們經(jīng)過培訓后上崗,也能獨立進行電動汽車的安裝.生產(chǎn)開始后,調研部門發(fā)現(xiàn):1名熟練工和2名新工人每月可安裝8輛電動汽車;2名熟練工和3名新工人每月可安裝14輛電動汽車.

1)每名熟練工和新工人每月分別可以安裝多少輛電動汽車?

2)如果工廠招聘n0<n<10)名新工人,使得招聘的新工人和抽調的熟練工剛好能完成一年的安裝任務,那么工廠有哪幾種新工人的招聘方案?

3)在(2)的條件下,工廠給安裝電動汽車的每名熟練工每月發(fā)2000元的工資,給每名新工人每月發(fā)1200元的工資,那么工廠應招聘多少名新工人,使新工人的數(shù)量多于熟練工,同時工廠每月支出的工資總額W(元)盡可能的少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內接于以AC為直徑的⊙OAD,CD2,BCBAACBD相交于點F,將△ABF沿AB翻折,得到△ABG,連接CGABE,則BE長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC是等腰三角形,頂角BAC=<600,D是BC邊上的一點,連接AD,線段AD繞點A順時針旋轉到AE,過點E作BC的平行線,交AB于點F,連接DE、BE、DF

(1)求證:BE=CD

(2)若ADBC,試判斷四邊形BDFE的形狀,并給出證明。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,RtABC的三個頂點A(-2,2),B(0,5),C(0,2).

(1)ABC以點C為旋轉中心旋轉180°,得到A1B1C,請畫出A1B1C的圖形.

(2)平移ABC,使點A的對應點A2坐標為(-2,-6),請畫出平移后對應的A2B2C2的圖形.

(3)若將A1B1C繞某一點旋轉可得到A2B2C2,請直接寫出旋轉中心的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)yax1)(x5)(a0)的圖象與x軸交于A、B兩點(點A在點B的左側),與y軸交于P點,過其頂點C作直線CHx軸于點H

1)若∠APB30°,請直接寫出滿足條件的點P的坐標;

2)當∠APB最大時,請求出a的值;

3)點P、O、C、B能否在同一個圓上?若能,請求出a的值,若不能,請說明理由.

4)若a ,在對稱軸HC上是否存在一點Q,使∠AQP=∠ABP?若存在,請直接寫出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校八年級一班20名女生某次體育測試的成績統(tǒng)計如下:

成績(分)

60

70

80

90

100

人數(shù)(人)

1

5

x

y

2

(1)如果這20名女生體育成績的平均分數(shù)是82分,求x、y的值;

(2)(1)的條件下,設20名學生測試成績的眾數(shù)是a,中位數(shù)是b的值.

查看答案和解析>>

同步練習冊答案