【題目】如圖,正方形ABCD中,MBC上一點(diǎn),MEAMMEAD的延長線于點(diǎn)E

1)求證:△ABM ∽△EMA;

2)若AB2,BM1,求DE的長.

【答案】(1)詳見解析;(2)3

【解析】

1)利用三角形兩組對應(yīng)角相等,可證三角形相似;

2)先用勾股定理求出AM,在根據(jù)三角形相似的性質(zhì)求出AE,最后DE=AE-AD即可求解.

解:(1)∵四邊形ABCD是正方形,

∴∠ABC=90°

MEAM,

∴∠AME=90°,

∴∠AMB+BAM=90°,∠BAM+EAM=90°,

∴∠AMB =EAM,∠ABC=AME =90°

.∴△ABM ∽△EMA

2)∵AB2,BM1

∴AM=

∵△ABM ∽△EMA

即:,解得AE=5;

又∵四邊形ABCD是正方形,

AD=AB=2

∴DE=AE-AD=5-2=3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB=90°,∠B=30°,AC=2,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)至△ABC,使得點(diǎn)A′恰好落在AB上,AB′與BC交于點(diǎn)D,則△ACD的面積為( 。

A. B.5C.5D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半徑為3O中,AB是直徑,AC是弦,且AC=4.過點(diǎn)O作直徑DEAC,垂足為點(diǎn)P,過點(diǎn)B的直線交AC的延長線和DE的延長線于點(diǎn)F、G

(1)求線段AP、CB的長;

(2)若OG=9,求證:FGO的切線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,過點(diǎn)DDEAB于點(diǎn)E,點(diǎn)F在邊CD上,CF=AE,連接AF,BF.

(1)求證:四邊形BFDE是矩形;

(2)已知∠DAB=60°,AF是∠DAB的平分線,若AD=3,求DC的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《國家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》規(guī)定:體質(zhì)測試成績達(dá)到90.0分及以上的為優(yōu)秀;達(dá)到80.0分至89.9分的為良好;達(dá)到60.0分至79.9分的為及格;59.9分及以下為不及格,某校為了了解九年級學(xué)生體質(zhì)健康狀況,從該校九年級學(xué)生中隨機(jī)抽取了10%的學(xué)生進(jìn)行體質(zhì)測試,測試結(jié)果如下面的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖所示。

各等級學(xué)生平均分統(tǒng)計(jì)表

等級

優(yōu)秀

良好

及格

不及格

平均分

92.1

85.0

69.2

41.3

各等級學(xué)生人數(shù)分布扇形統(tǒng)計(jì)圖

1)扇形統(tǒng)計(jì)圖中不及格所占的百分比是  ;

2)計(jì)算所抽取的學(xué)生的測試成績的平均分;

3)若所抽取的學(xué)生中所有不及格等級學(xué)生的總分恰好等于某一個(gè)良好等級學(xué)生的分?jǐn)?shù),請估計(jì)該九年級學(xué)生中約有多少人達(dá)到優(yōu)秀等級。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,矩形OABC的邊OAx軸上,OCy軸上,且B的坐標(biāo)為(8,6),動(dòng)點(diǎn)DB點(diǎn)出發(fā),以1個(gè)單位長度每秒的速度向C點(diǎn)運(yùn)動(dòng)t秒(D不與B,C重合),連接AD,將△ABD沿AD翻折至△AB'DB'在矩形的內(nèi)部或邊上),連接DB',DB'所在直線與AC交于點(diǎn)F,與OA所在直線交于點(diǎn)E

1)①當(dāng)t 秒,B'F重合;

②求線段CB'的取值范圍;

2)①求EB'的長度(用含t的代數(shù)式表示),并求出t的取值范圍;

②當(dāng)t為何值時(shí),△AEF是以AE為底的等腰三角形?并求出此時(shí)EC的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),AD和過C點(diǎn)的直線互相垂直,垂足為D,且AC平分∠DAB.

(1)求證:DC為⊙O的切線;

(2)若∠DAB=60°,⊙O的半徑為3,求線段AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,弦CDAB于點(diǎn)EG為⊙O一點(diǎn),連接OD, 并延長DOCG于點(diǎn)MCM=GM.

1)求證:∠GCD=2ADC

2)過點(diǎn)GGNCD,交CD于點(diǎn)N,交⊙O于點(diǎn)T,過點(diǎn)OOKTG,交TG于點(diǎn)K,連接TC,求證:TC=2NK

3)在(2)的條件下,連接BG,BG=11,CD=30,求sinCTN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,把矩形沿對角線所在的直線折疊,點(diǎn)落在點(diǎn)處,軸相交于點(diǎn).矩形的邊,的長是關(guān)于的一元二次方程的兩個(gè)根,且

(1)求線段的長;

(2)求證:,并求出線段的長;

(3)直接寫出點(diǎn)的坐標(biāo);

(4)若是直線上一個(gè)動(dòng)點(diǎn),在坐標(biāo)平面內(nèi)是否存在點(diǎn),使以點(diǎn),為頂點(diǎn)的四邊形是菱形?若存在,請直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案