如圖,是上海世博園內(nèi)的一塊等腰梯形的花園,此花園上底長(zhǎng)40米,下底長(zhǎng)100米,上下底相距40米,為方便游人觀光休息,現(xiàn)要在花園中修建一條橫、縱向的“H”型觀光大道,現(xiàn)已知觀光大道各處的寬度相等.其面積是整個(gè)梯形面積的
1156
,若設(shè)觀光大道的寬為x米.
(1)求梯形ABCD的周長(zhǎng);
(2)用含x的式子表示觀光大道的總長(zhǎng);
(3)求觀光大道的寬是多少米?
分析:(1)欲求周長(zhǎng),只要再求出腰長(zhǎng)就可以了,根據(jù)等腰三角形的性質(zhì)BE=FC=
1
2
(BC-AD),再利用勾股定理即可求出腰長(zhǎng)AB;
(2)根據(jù)圖形,觀光大道的總長(zhǎng)等于兩個(gè)高長(zhǎng)加上橫向觀光大道,而橫行觀光大道的長(zhǎng)是上底的長(zhǎng)減去兩個(gè)觀光大道的寬度;
(3)根據(jù)觀光大道的面積等于觀光大道的總長(zhǎng)×寬,再根據(jù)甬道面積是整個(gè)梯形面積的
11
56
,列出方程求解即可.
解答:解:(1)在等腰梯形ABCD中,AE⊥BC,DF⊥BC,EF=AD=40,
∴BE=CF=
1
2
(BC-EF)

=
1
2
(100-40)

=30,
∴AB=CD=
302+402
=50,
∴梯形ABCD的周長(zhǎng)=AB+BC+CD+DA=50+100+50+40=240(米).
(2)觀光大道的總長(zhǎng):40×2+40-2x=(120-2x)米.
(3)根據(jù)題意,得(120-2x)x=
11
56
×
1
2
×40(40+100)

整理,得x2-60x+275=0,
解之得:x1=5,x2=55,因55>40,不符合題意,舍去.
答:觀光大道的寬為5米.
點(diǎn)評(píng):本題主要考查等腰梯形的性質(zhì)的運(yùn)用和勾股定理的運(yùn)用,要求我們熟練掌握等腰梯形的性質(zhì),仔細(xì)觀察圖形,學(xué)會(huì)所學(xué)知識(shí)的融會(huì)貫通.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

30、如圖,是上海世博園內(nèi)的一個(gè)矩形花園,花園長(zhǎng)為100米,寬為50米,在它的四角各建有一個(gè)同樣大小的正方形觀光休息亭,四周建有與觀光休息亭等寬的觀光大道,其余部分(圖中陰影部分)種植的是不同花草.已知種植花草部分的面積為3600米2,那么矩形花園各腳處的正方形觀光休息亭的邊長(zhǎng)為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,是上海世博園內(nèi)的一塊等腰梯形的花園,此花園上底長(zhǎng)40米,下底長(zhǎng)100米,上下底相距40米,為方便游人觀光休息,現(xiàn)要在花園中修建一條橫、縱向的“H”型觀光大道,現(xiàn)已知觀光大道各處的寬度相等.其面積是整個(gè)梯形面積的數(shù)學(xué)公式,若設(shè)觀光大道的寬為x米.
(1)求梯形ABCD的周長(zhǎng);
(2)用含x的式子表示觀光大道的總長(zhǎng);
(3)求觀光大道的寬是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:湖北省期中題 題型:解答題

如圖,是上海世博園內(nèi)的一塊等腰梯形的花園,此花園上底長(zhǎng)40米,下底長(zhǎng)100米,上下底相距40米,為方便游人觀光休息,現(xiàn)要在花園中修建一條橫、縱向的“H”型觀光大道,現(xiàn)已知觀光大道各處的寬度相等.其面積是整個(gè)梯形面積的,若設(shè)觀光大道的寬為x米.
(1)求梯形ABCD的周長(zhǎng);
(2)用含x的式子表示觀光大道的總長(zhǎng);
(3)求觀光大道的寬是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第28章《一元二次方程》中考題集(23):28.3 用一元二次方程解決實(shí)際問題(解析版) 題型:解答題

如圖,是上海世博園內(nèi)的一個(gè)矩形花園,花園長(zhǎng)為100米,寬為50米,在它的四角各建有一個(gè)同樣大小的正方形觀光休息亭,四周建有與觀光休息亭等寬的觀光大道,其余部分(圖中陰影部分)種植的是不同花草.已知種植花草部分的面積為3600米2,那么矩形花園各角處的正方形觀光休息亭的邊長(zhǎng)為多少米?

查看答案和解析>>

同步練習(xí)冊(cè)答案