【題目】隨著信息技術(shù)的快速發(fā)展,“互聯(lián)網(wǎng)+”滲透到我們?nèi)粘I畹母鱾(gè)領(lǐng)域,網(wǎng)上在線學(xué)習(xí)交流已不再是夢(mèng),現(xiàn)有某教學(xué)網(wǎng)站策劃了A,B兩種上網(wǎng)學(xué)習(xí)的月收費(fèi)方式:
收費(fèi)方式 | 月使用費(fèi)/元 | 包時(shí)上網(wǎng)時(shí)間/h | 超時(shí)費(fèi)/(元/min) |
A | 7 | 25 | 0.01 |
B | m | n | 0.01 |
設(shè)每月上網(wǎng)學(xué)習(xí)時(shí)間為x小時(shí),方案A,B的收費(fèi)金額分別為yA , yB .
(1)如圖是yB與x之間函數(shù)關(guān)系的圖象,請(qǐng)根據(jù)圖象填空:m= n=
(2)寫出與x之間的函數(shù)關(guān)系式.
(3)選擇哪種方式上網(wǎng)學(xué)習(xí)合算,為什么?
【答案】
(1)10;50
(2)
解:yA與x之間的函數(shù)關(guān)系式為:
當(dāng)x≤25時(shí),yA=7,
當(dāng)x>25時(shí),yA=7+(x﹣25)×60×0.01,
∴yA=0.6x﹣8,
∴yA=;
(3)
解:∵yB與x之間函數(shù)關(guān)系為:當(dāng)x≤50時(shí),yB=10,
當(dāng)x>50時(shí),yB=10+(x﹣50)×60×0.01=0.6x﹣20,
當(dāng)0<x≤25時(shí),yA=7,yB=50,
∴yA<yB,
∴選擇A方式上網(wǎng)學(xué)習(xí)合算,
當(dāng)25<x≤50時(shí).yA=yB,即0.6x﹣8=10,解得;x=30,
∴當(dāng)25<x<30時(shí),yA<yB,選擇A方式上網(wǎng)學(xué)習(xí)合算,
當(dāng)x=30時(shí),yA=yB,選擇哪種方式上網(wǎng)學(xué)習(xí)都行,
當(dāng)30<x≤50,yA>yB,選擇B方式上網(wǎng)學(xué)習(xí)合算,
當(dāng)x>50時(shí),∵yA=0.6x﹣8,yB=0.6x﹣20,yA>yB,∴選擇B方式上網(wǎng)學(xué)習(xí)合算,
綜上所述:當(dāng)0<x<30時(shí),yA<yB,選擇A方式上網(wǎng)學(xué)習(xí)合算,
當(dāng)x=30時(shí),yA=yB,選擇哪種方式上網(wǎng)學(xué)習(xí)都行,
當(dāng)x>30時(shí),yA>yB,選擇B方式上網(wǎng)學(xué)習(xí)合算.
【解析】(1)由圖象知:m=10,n=50;
(2)根據(jù)已知條件即可求得yA與x之間的函數(shù)關(guān)系式為:當(dāng)x≤25時(shí),yA=7;當(dāng)x>25時(shí),yA=7+(x﹣25)×0.01,
(3)先求出yB與x之間函數(shù)關(guān)系為:當(dāng)x≤50時(shí),yB=10;當(dāng)x>50時(shí),yB=10+(x﹣50)×0.01=0.01x+9.5;然后分段求出哪種方式上網(wǎng)學(xué)習(xí)合算即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是某同學(xué)對(duì)多項(xiàng)式(x2-4x+2)(x2-4x+6)+4進(jìn)行因式分解的過程.
解:設(shè)x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
=y2+8y+16 (第二步)
=(y+4)2(第三步)
=(x2-4x+4)2(第四步)
回答下列問題:
(1)該同學(xué)第二步到第三步運(yùn)用了因式分解的_______.
A.提取公因式 |
B.平方差公式 |
C.兩數(shù)和的完全平方公式 |
D.兩數(shù)差的完全平方公式 |
(2)該同學(xué)因式分解的結(jié)果是否徹底?________.(填“徹底”或“不徹底”)若不徹底,請(qǐng)直接寫出因式分解的最后結(jié)果_________ .
(3)請(qǐng)你模仿以上方法嘗試對(duì)多項(xiàng)式(x2-2x)(x2-2x+2)+1進(jìn)行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某大樓的頂部樹有一塊廣告牌CD,小李在山坡的坡腳A處測(cè)得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測(cè)得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1: ,AB=10米,AE=15米.(i=1: 是指坡面的鉛直高度BH與水平寬度AH的比)
(1)求點(diǎn)B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1米.參考數(shù)據(jù): 1.414, 1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著私家車擁有量的增加,停車問題已經(jīng)給人們的生活帶來了很多不便.為了緩解停車矛盾,某小區(qū)開發(fā)商欲投資16萬元,建造若干個(gè)停車位,考慮到實(shí)際因素,計(jì)劃露天車位的數(shù)量不少于室內(nèi)車位的2倍,但不超過室內(nèi)車位的3倍.據(jù)測(cè)算,建造費(fèi)用及年租金如下表:
類別 | 室內(nèi)車位 | 露天車位 |
建造費(fèi)用(元/個(gè)) | 5 000 | 1 000 |
年租金(元/個(gè)) | 2 000 | 800 |
(1)該開發(fā)商有哪幾種符合題意的建造方案?寫出解答過程.
(2)若按表中的價(jià)格將兩種車位全部出租,哪種方案獲得的年租金最多?并求出此種方案的年租金.(不考慮其他費(fèi)用)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課本中有一個(gè)例題:
有一個(gè)窗戶形狀如圖1,上部是一個(gè)半圓,下部是一個(gè)矩形,如果制作窗框的材料總長(zhǎng)為6m,如何設(shè)計(jì)這個(gè)窗戶,使透光面積最大?
這個(gè)例題的答案是:當(dāng)窗戶半圓的半徑約為0.35m時(shí),透光面積最大值約為1.05m2 .
我們?nèi)绻淖冞@個(gè)窗戶的形狀,上部改為由兩個(gè)正方形組成的矩形,如圖2,材料總長(zhǎng)仍為6m,利用圖3,解答下列問題:
(1)若AB為1m,求此時(shí)窗戶的透光面積?
(2)與課本中的例題比較,改變窗戶形狀后,窗戶透光面積的最大值有沒有變大?請(qǐng)通過計(jì)算說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一螞蟻從原點(diǎn)O出發(fā),按向上、向右、向下、向右的方向依次不斷移動(dòng),每次移動(dòng)1個(gè)單位.其行走路線如圖.
(1)填寫下列各點(diǎn)的坐標(biāo):A4( , ),A8( , );
(2)點(diǎn)A4n﹣1的坐標(biāo)(n是正整數(shù))為
(3)指出螞蟻從點(diǎn)A2013到點(diǎn)A2014的移動(dòng)方向.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【操作發(fā)現(xiàn)】在計(jì)算器上輸入一個(gè)正數(shù),不斷地按“ ”鍵求算術(shù)平方根,運(yùn)算結(jié)果越來越接近1或都等于1.
【提出問題】輸入一個(gè)實(shí)數(shù),不斷地進(jìn)行“乘以常數(shù)k,再加上常數(shù)b”的運(yùn)算,有什么規(guī)律?
【分析問題】我們可用框圖表示這種運(yùn)算過程(如圖a).
也可用圖象描述:如圖1,在x軸上表示出x1 , 先在直線y=kx+b上確定點(diǎn)(x1 , y1),再在直線y=x上確定縱坐標(biāo)為y1的點(diǎn)(x2 , y1),然后再x軸上確定對(duì)應(yīng)的數(shù)x2 , …,以此類推.
【解決問題】研究輸入實(shí)數(shù)x1時(shí),隨著運(yùn)算次數(shù)n的不斷增加,運(yùn)算結(jié)果x,怎樣變化.
(1)若k=2,b=﹣4,得到什么結(jié)論?可以輸入特殊的數(shù)如3,4,5進(jìn)行觀察研究;
(2)若k>1,又得到什么結(jié)論?請(qǐng)說明理由;
(3)①若k=﹣ ,b=2,已在x軸上表示出x1(如圖2所示),請(qǐng)?jiān)趚軸上表示x2 , x3 , x4 , 并寫出研究結(jié)論;
②若輸入實(shí)數(shù)x1時(shí),運(yùn)算結(jié)果xn互不相等,且越來越接近常數(shù)m,直接寫出k的取值范圍及m的值(用含k,b的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知在△ABC中,AB=AC,D為BC邊的中點(diǎn),過點(diǎn)D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).
(1)求證:DE=DF;
(2)若∠A=60°,BE=1,求△ABC的周長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com