如圖,等邊△ABC的邊長為3,P為BC上一點,且BP=1,D為AC上一點,若∠APD=60°,則CD的長為(  )
A.B.C.D.
B

試題分析:∵△ABC是等邊三角形,
∴∠B=∠C=60°,
∵∠APB=∠PAC+∠C,∠PDC=∠PAC+∠APD,
∵∠APD=60°,
∴∠APB=∠PAC+60°,∠PDC=∠PAC+60°,
∴∠APB=∠PDC,
又∵∠B=∠C=60°,
∴△ABP∽△PCD,
=,即=,
∴CD=
故選B.
點評:本題考查了相似三角形的性質和判定.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知:△ABC中,∠ABC=90°,AB=BC,延長BC到E,使得CE=2BC,取CE的中點D,連接AE、AD.求證:△ACD∽△ECA.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖、分別在的邊上,要使△AED∽△ABC,應添加條件是            ;(只寫出一種即可).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在△ABC中,AB=4,如圖(1)所示,DE∥BC,DE把ABC分成面積相等的兩部分,即S=S,求AD的長.
如圖(2)所示,DE∥FG∥BC,DE、FG把△ABC分成面積相等的三部分,即S=S=S,求AD的長;
如圖(3)所示,DE∥FG∥HK∥…∥BC,DE、FG、HK、…把△ABC分成面積相等的n部分,S=S=S=…,請直接寫出AD的長.
 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,小明作出了邊長為1的第1個正△A1B1C1,算出了正△A1B1C1的面積.然后分別取△A1B1C1三邊的中點A2、B2、C2,作出了第2個正△A2B2C2,算出了正△A2B2C2的面積.用同樣的方法,作出了第3個正△A3B3C3,算出了正△A3B3C3的面積…,由此可得,第10個正△A10B10C10的面積是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,正方形ABCD的面積為1,M是AB的中點,則圖中陰影部分的面積是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,有一塊△ABC材料,BC=10,高AD=6,把它加工成一個矩形零件,使矩形的一邊GH在BC上,其余兩個頂點E,F(xiàn)分別在AB,AC上,那么矩形EFHG的周長l的取值范圍是( 。
A.0<l<20B.6<l<10C.12<l<20D.12<l<26

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在△ABC中,EF∥BC,=,S四邊形BCFE=8,則SABC=( 。
A.9B.10C.12D.13

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在△ABC中,D、E分別是AB、AC上的點,DE∥BC,且AD=AB,則△ADE的周長與△ABC的周長的比為          

查看答案和解析>>

同步練習冊答案