23、如圖,△ABC中BA=BC,點(diǎn)D是AB延長(zhǎng)線上一點(diǎn),DF⊥AC于F交BC于E,
求證:△DBE是等腰三角形.
分析:首先根據(jù)等腰三角形的兩個(gè)底角相等得到∠A=∠C,再根據(jù)等角的余角相等得∠FEC=∠D,同時(shí)結(jié)合對(duì)頂角相等即可證明△DBE是等腰三角形.
解答:證明:在△ABC中,BA=BC,
∵BA=BC,
∴∠A=∠C,
∵DF⊥AC,
∴∠C+∠FEC=90°,
∠A+∠D=90°,
∴∠FEC=∠D,
∵∠FEC=∠BED,
∴∠BED=∠D,
∴BD=BE,
即△DBE是等腰三角形.
點(diǎn)評(píng):此題主要考查等腰三角形的基本性質(zhì)及綜合運(yùn)用等腰三角形的性質(zhì)來(lái)判定三角形是否為等腰三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、如圖:△ABC中,AD⊥BC,CE⊥AB,垂足分別為D、E,AD、CE交于點(diǎn)H,請(qǐng)你添加一個(gè)適當(dāng)?shù)臈l件:
BD=BE或AD=CE或BA=BC
,使△ABD≌△CEB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖,△ABC中,D、E在BC上,且AC=DC,BA=BE,若5∠DAE=2∠BAC,則∠DAE的度數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•長(zhǎng)寧區(qū)二模)如圖,△ABC中,∠ACB=90°,D、E分別是BC、BA的中點(diǎn),聯(lián)結(jié)DE,F(xiàn)在DE延長(zhǎng)線上,且AF=AE.
(1)求證:四邊形ACEF是平行四邊形;
(2)若四邊形ACEF是菱形,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,△ABC中BA=BC,點(diǎn)D是AB延長(zhǎng)線上一點(diǎn),DF⊥AC于F交BC于E,
求證:△DBE是等腰三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案