【題目】)已知點(diǎn)A與點(diǎn)B關(guān)于直線l成軸對(duì)稱,請(qǐng)尺規(guī)作圖作出直線l(保留作圖痕跡);

)如圖,ABC(∠B>∠A).

)在邊AC上用尺規(guī)作圖作出點(diǎn)D,使∠ADB+2A180°(保留作圖痕跡);

)在()的情況下,連接BD,若CBCD,∠A35°,則∠C   

【答案】)如圖,直線l為所作;見解析;()()如圖,點(diǎn)D為所作;見解析;()∠C40°

【解析】

(Ⅰ)作AB的垂直平分線即可;

(Ⅱ)(。┳AB的垂直平分線交ACD,則點(diǎn)D滿足條件;

(ⅱ)先利用DADB得到∠A=∠DBA=35°,再利用三角形外角性質(zhì)計(jì)算出∠CDB=70°,然后根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和計(jì)算∠C的度數(shù).

(Ⅰ)如圖,直線l為所作;

(Ⅱ)(。┤鐖D,點(diǎn)D為所作;

(ⅱ)∵∠ADB+2∠A=180°,

而∠ADB+∠A+∠DBA=180°,

∴∠A=∠DBA=35°,

∴∠CDB=∠A+∠DBA=70°,

CDCB,

∴∠CBD=∠CDB=70°,

∴∠C=180°﹣70°﹣70°=40°.

故答案為40°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠CAB=DBA,再添加一個(gè)條件,不一定能判定ABC≌△BAD的是( 。

A. AC=BDB. 1=2C. AD=BCD. C=D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線分別交軸、軸于兩點(diǎn),線段上有一動(dòng)點(diǎn)由原點(diǎn)向點(diǎn)運(yùn)動(dòng),速度為每秒個(gè)單位長度,設(shè)運(yùn)動(dòng)時(shí)間為秒.

直接填出兩點(diǎn)的坐標(biāo):________,________;

過點(diǎn)作直線截,使截得的三角形與相似,若當(dāng)在某一位置時(shí),滿足條件的直線共有條,的取值范圍是________;

如圖,過點(diǎn)軸的垂線交直線于點(diǎn),設(shè)以為頂點(diǎn)的拋物線與直線的另一交點(diǎn)為

①用含的代數(shù)式分別表示________________;

②隨著點(diǎn)運(yùn)動(dòng),的長是否為定值?若是,請(qǐng)求出長;若不是,說明理由;

③設(shè)邊上的高為,請(qǐng)直接寫出當(dāng)為何值時(shí),的值最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】節(jié)能又環(huán)保的油電混合動(dòng)力汽車,既可以用油做動(dòng)力行駛,也可以用電做動(dòng)力行駛,某品牌油電混合動(dòng)力汽車從甲地行駛到乙地,若完全用油做動(dòng)力行駛,則費(fèi)用為80元;若完全用電做動(dòng)力行駛,則費(fèi)用為30元,已知汽車行駛中每千米用油費(fèi)用比用電費(fèi)用多0.5元.

(1)求:汽車行駛中每千米用電費(fèi)用是多少元?甲、乙兩地的距離是多少千米?

(2)若汽車從甲地到乙地采用油電混合動(dòng)力行駛,且所需費(fèi)用不超過50元,則至少需要用電行駛多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABC中,∠ABC20°,外角∠ABF的平分線與CA邊的延長線交于點(diǎn)D,外角∠EAC的平分線交BC邊的延長線于點(diǎn)H,若∠BDA=∠DAB,則∠AHC=( 。┒龋

A.4B.5C.6D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙的外接圓,,的延長線于點(diǎn),于點(diǎn).

(1)求證:是⊙的切線;

(2),.求⊙的半徑和線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,下列說法:①,②當(dāng)時(shí),,③若在函數(shù)圖象上,當(dāng)時(shí),,④,其中正確的是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖①②,試研究其中∠12與∠3、4之間的數(shù)量關(guān)系;

(2)如果我們把∠1、2稱為四邊形的外角,那么請(qǐng)你用文字描述上述的關(guān)系式;

(3)用你發(fā)現(xiàn)的結(jié)論解決下列問題:

如圖,AEDE分別是四邊形ABCD的外角∠NAD、MDA的平分線,B+C=240°,求∠E的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,CD是∠ACB的角平分線,CEAB邊上的高,

1)若∠A=40°,∠B=60°,求∠DCE的度數(shù).

2)若∠A=m,∠B=n,求∠DCE.(用m、n表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案