【題目】在平面直角坐標(biāo)系xOy中,定義直線y=ax+b為拋物線y=ax2+bx的特征直線,C(a,b)為其特征點(diǎn).設(shè)拋物線y=ax2+bx與其特征直線交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).

(1)當(dāng)點(diǎn)A的坐標(biāo)為(0,0),點(diǎn)B的坐標(biāo)為(1,3)時(shí),特征點(diǎn)C的坐標(biāo)為


(2)若拋物線y=ax2+bx如圖所示,請(qǐng)?jiān)谒o圖中標(biāo)出點(diǎn)A、點(diǎn)B的位置;
(3)設(shè)拋物線y=ax2+bx的對(duì)稱軸與x軸交于點(diǎn)D,其特征直線交y軸于點(diǎn)E,點(diǎn)F的坐標(biāo)為(1,0),DE∥CF.
①若特征點(diǎn)C為直線y=﹣4x上一點(diǎn),求點(diǎn)D及點(diǎn)C的坐標(biāo)
②若<tan∠ODE<2,則b的取值范圍是

【答案】
(1)(3,0)
(2)

解:聯(lián)立直線y=ax+b與拋物線y=ax2+bx,

得:ax2+(b﹣a)x﹣b=0,

∴(ax+b)(x﹣1)=0,

解得:x=﹣,x=1,

∴A(1,a+b),B(﹣,0).

點(diǎn)A、點(diǎn)B的位置如圖所示;


(3)點(diǎn)D的坐標(biāo)為(2,0).點(diǎn)F的坐標(biāo)為(1,0);0<b≤
【解析】(1)根據(jù)點(diǎn)A、B求出直線解析式,得到a、b值,即可寫(xiě)出點(diǎn)C坐標(biāo);
(2)聯(lián)立直線與拋物線解析式,即可求出點(diǎn)A(1,a+b),B(﹣ , 0),根據(jù)圖象描出兩點(diǎn)即可;
(3)求出點(diǎn)D坐標(biāo),根據(jù)點(diǎn)F、C、E坐標(biāo)及平行四邊形性質(zhì),即可求出特征點(diǎn)C的坐標(biāo),根據(jù)已知和已證得:C(a,b),E(0,b),F(xiàn)(1,0),D(﹣ , 0),由CEDF平行四邊形性質(zhì)可以得出b關(guān)于a的函數(shù)關(guān)系式,利用已知<tan∠ODE<2求出a的取值范圍,進(jìn)而求出b的取值范圍;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知BC∥GE,AF∥DE,∠1=56°.

(1)求AFG的度數(shù);

(2)若AQ平分FAC,交BC于點(diǎn)Q,且Q=14°,求ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圖象(折線OEFPMN)描述了某汽車(chē)在行駛過(guò)程中速度與時(shí)間的函數(shù)關(guān)系,下列說(shuō)法中錯(cuò)誤的是( )

A. 3分時(shí)汽車(chē)的速度是40千米/時(shí)

B. 12分時(shí)汽車(chē)的速度是0千米/時(shí)

C. 從第3分到第6分,汽車(chē)行駛了120千米

D. 從第9分到第12分,汽車(chē)的速度從60千米/時(shí)減少到0千米/時(shí)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB=45°,點(diǎn)M,N在邊OA上,OM=3,ON=7,點(diǎn)P是直線OB上的點(diǎn),要使點(diǎn)P,M,N構(gòu)成等腰三角形的點(diǎn)P有( 。﹤(gè).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為2的正方形ABCD在第一象限內(nèi),ABx軸,點(diǎn)A的坐標(biāo)為(5,3),己知直線l:y= x﹣2

(1)將直線l向上平移m個(gè)單位,使平移后的直線恰好經(jīng)過(guò)點(diǎn)A,求m的值

(2)在(1)的條件下,平移后的直線與正方形的邊長(zhǎng)BC交于點(diǎn)E,求ABE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,點(diǎn)O為直線AB上一點(diǎn),過(guò)點(diǎn)O作射線OC,使∠AOC=120°,將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

(1)將圖①中的三角板OMN擺放成如圖②所示的位置,使一邊OM在∠BOC的內(nèi)部,當(dāng)OM平分∠BOC時(shí),∠BON=   ;(直接寫(xiě)出結(jié)果)

(2)在(1)的條件下,作線段NO的延長(zhǎng)線OP(如圖③所示),試說(shuō)明射線OP是∠AOC的平分線;

(3)將圖①中的三角板OMN擺放成如圖④所示的位置,請(qǐng)?zhí)骄俊?/span>NOC與∠AOM之間的數(shù)量關(guān)系.(直接寫(xiě)出結(jié)果,不須說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,⊙P與y軸相切于點(diǎn)C,⊙P的半徑是4,直線y=x被⊙P截得的弦AB的長(zhǎng)為4 , 求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰梯形ABCD中,AD∥BC,過(guò)點(diǎn)D作DF⊥BC于F.若AD=2,BC=4,DF=2,則DC的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,在ABCD中,延長(zhǎng)DA到點(diǎn)E,延長(zhǎng)BC到點(diǎn)F,使得AE=CF,連接EF,分別交AB,CD于點(diǎn)M,N,連接DM,BN.

(1)求證:△AEM≌△CFN;
(2)求證:四邊形BMDN是平行四邊形.

查看答案和解析>>

同步練習(xí)冊(cè)答案