如圖,△ABC是等腰直角三角形,BC是斜邊,將△ABP繞A逆時針旋轉(zhuǎn)后,能夠與△ACP′重合,如果AP=3,那么PP′2=______.
∵△ABP繞A逆時針旋轉(zhuǎn)后,能夠得到△ACP′,
∴AP=AP′=3,∠PAP′=∠BAC=90°,
在Rt△APP′中,
由勾股定理,得PP′2=AP2+AP′2=32+32=18,
故答案為:18.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角坐標系中,△ABO的頂點A,B,O的坐標分別為(1,0)(0,1),(0,0),點列P1,P2,P3,P4,…中的相鄰兩點都關(guān)于△ABO的一個頂點對稱.點P1與點P2關(guān)于點A對稱,點P2與P3點關(guān)于點B對稱,點P3與點P4關(guān)于點O對稱,點P4與點P5關(guān)于點A對稱,點P5與點P6關(guān)于點B對稱,點P6與點P7關(guān)于點O對稱…對稱中心分別是A,B,O,A,B,O,…,且這對稱中心依次循環(huán).已知P1的坐標是(1,1),試寫出點P2,P7,P100的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中有△ABC與△A1B1C1,其位置如圖所示,
(1)將△ABC繞C點按______(填“順”或“逆”)時針方向旋轉(zhuǎn)______度時與△A1B1C1重合.
(2)若將△ABC向右平移2個單位后,只通過一次旋轉(zhuǎn)變換能與△A1B1C1重合嗎?若能,請直接指出旋轉(zhuǎn)中心的坐標、方向及旋轉(zhuǎn)角度;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

請閱讀下列材料:
問題:如圖1,在正方形ABCD和正方形CEFG中,點B、C、E在同一條直線上,M是線段AF的中點,連接DM,MG.探究線段DM與MG數(shù)量與位置有何關(guān)系.

小聰同學的思路是:延長DM交GF于H,構(gòu)造全等三角形,經(jīng)過推理使問題得到解決.
請你參考小聰同學的思路,探究并解決下列問題:
(1)直接寫出上面問題中線段DM與MG數(shù)量與位置有何關(guān)系______;
(2)將圖1中的正方形CEFG繞點C順時針旋轉(zhuǎn),使正方形CEFG對角線CF恰好與正方形ABCD的邊BC在同一條直線上,原問題中的其他條件不變(如圖2).你在(1)中得到的兩個結(jié)論是否發(fā)生變化?寫出你的猜想并加以證明.
(3)如圖3,將正方形CEFG繞點C順時針旋轉(zhuǎn)任意角度,原問題中的其他條件不變,寫出你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知點P是邊長為5的正方形ABCD內(nèi)的一點,連結(jié)PA,PB,PC,若PA=2,PB=4,∠APB=135°.
(1)將△PAB繞點B順時針旋轉(zhuǎn)90°,畫出△P′CB的位置.
(2)①求PC的長;
②求△PAB旋轉(zhuǎn)到△P′CB的過程中邊PA所掃過區(qū)域的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,點A,B,C的坐標分別為(0,-1),(0,2),(3,0).從下面四個點M(3,3),N(3,-3),P(-3,0),Q(-3,1)中選擇一個點,以A,B,C與該點為頂點的四邊形不是中心對稱圖形,則該點是( 。
A.MB.NC.PD.Q

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

平面直角坐標系中,點A的坐標為(4,-3),將線段OA繞原點O順時針旋轉(zhuǎn)60°,得到OA′,連接AA′,則△AOA′的周長是(  )
A.10+3
2
B.10+4
2
C.10+5
2
D.15

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

把一副三角板如圖(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜邊AB=6厘米,DC=7厘米.把三角板DCE繞點C順時針旋轉(zhuǎn)15°得到△D1CE1,如圖(2),這時AB與CD1相交于點O,與D1E1相交于點F.則AD1=______cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

用4塊如所示的瓷磚拼成一個正方形,使所得正方形(包括色彩因素)分別是具有如下對稱性的美術(shù)圖案:
(1)只是軸對稱圖形而不是中心對稱圖形;
(2)既是軸對稱圖形又是中心對稱圖形.畫出符合要求的圖形各兩個.

查看答案和解析>>

同步練習冊答案