【題目】如圖,在△ABC中,∠A=90°,O是BC邊上一點(diǎn),以O為圓心的半圓分別與AB、AC邊相切于D、E兩點(diǎn),連接OD.已知BD=2,AD=3.
求:(1)tanC;
(2)圖中兩部分陰影面積的和.
【答案】解:(1)連接OE,
∵AB、AC分別切⊙O于D、E兩點(diǎn),
∴∠ADO=∠AEO=90°,
又∵∠A=90°,
∴四邊形ADOE是矩形,
∵OD=OE,
∴四邊形ADOE是正方形,
∴OD∥AC,OD=AD=3,
∴∠BOD=∠C,
∴在Rt△BOD中,,
∴.
答:tanC=.
(2)解:如圖,設(shè)⊙O與BC交于M、N兩點(diǎn),
由(1)得:四邊形ADOE是正方形,
∴∠DOE=90°,
∴∠COE+∠BOD=90°,
∵在Rt△EOC中,,OE=3,
∴,
∴S扇形DOM+S扇形EON=S扇形DOE=,
∴S陰影=S△BOD+S△COE﹣(S扇形DOM+S扇形EON)=,
答:圖中兩部分陰影面積的和為.
【解析】解:(1)連接
∵、分別切于、兩點(diǎn)
∴
又∵
∴四邊形是矩形
∵
∴四邊形是正方形. .................................(2分)
∴∥,
∴
∴在中,
∴. .................................(5分)
(2)如圖,設(shè)與交于、兩點(diǎn).由(1)得,四邊形是正方形
∴
∴
∵在中, ,
∴. .................................(7分)
∴
∴
∴圖中兩部分陰影面積的和為............ 9分
(1)連接,求得四邊形是正方形,得出AD的長(zhǎng),從而求得
(2)根據(jù)陰影面積等于三角形的面積減去扇形的面積求得
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】火車在筆直的鐵路上開動(dòng),火車頭以100千米/時(shí)的速度前進(jìn)了半小時(shí),則車尾走的路程是( )
A. 100千米 B. 50千米 C. 200千米 D. 無法計(jì)算
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鈍角三角形ABC中,∠BAC>90°,∠ACB=α,∠ABC=β,過點(diǎn)A的直線l交BC邊于點(diǎn)D.點(diǎn)E在直線l上,且BC=BE.
(1)若AB=AC,點(diǎn)E在AD延長(zhǎng)線上. 當(dāng)α=30°,點(diǎn)D恰好為BE中點(diǎn)時(shí),補(bǔ)全圖1,直接寫出∠BAE=°,
∠BEA=°;
(2)如圖2,若∠BAE=2α,求∠BEA的度數(shù)(用含α的代數(shù)式表示);
(3)如圖3,若AB<AC,∠BEA的度數(shù)與(1)中②的結(jié)論相同,直接寫出∠BAE,α,β滿足的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于方程x2+2x﹣4=0的根的情況,下列結(jié)論錯(cuò)誤的是( 。
A. 有兩個(gè)不相等的實(shí)數(shù)根B. 兩實(shí)數(shù)根的和為﹣2
C. 沒有實(shí)數(shù)根D. 兩實(shí)數(shù)根的積為﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】PM2.5是大氣壓中直徑小于或等于0.0000025m的顆粒物,將0.0000025用科學(xué)記數(shù)法表示為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)多邊形如果是軸對(duì)稱圖形,那么它的邊數(shù)與對(duì)稱軸的條數(shù)之間存在聯(lián)系嗎?
(1)以凸六邊形為例,如果這個(gè)凸六邊形是軸對(duì)稱圖形,那么它可能有條對(duì)稱軸;
(2)凸五邊形可以恰好有兩條對(duì)稱軸嗎?如果存在請(qǐng)畫出圖形,并用虛線標(biāo)出兩條對(duì)稱軸;否則,請(qǐng)說明理由;
(3)通過對(duì)(1)中凸六邊形的研究,請(qǐng)大膽猜想,一個(gè)凸多邊形如果是軸對(duì)稱圖形,那么它的邊數(shù)與對(duì)稱軸的條數(shù)之間的聯(lián)系是: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com