【題目】如圖所示,ABC是邊長為2的等邊三角形,DAB邊的中點(diǎn),FBC邊上的動(dòng)點(diǎn),EAC邊上的動(dòng)點(diǎn),當(dāng)E、F的位置在何處時(shí),才能使的周長最小?簡要說明作法.

【答案】點(diǎn)EF分別為ACBC中點(diǎn)時(shí),△DEF的周長最小.

【解析】

分別作點(diǎn)D關(guān)于BC、AC的對稱點(diǎn)D1、D2,交AC、BCM、N,連接,分別交AC、BC于點(diǎn)E、F,根據(jù)軸對稱的性質(zhì)可得DE=D1E,DF=D2F,DMAC,DNBC,DM=D1MDN=D2N,D1D2是△DEF的最小值,由等邊三角形的性質(zhì)可得∠B=A=60°,可得∠ADM=BDN=30°,即可得∠D1DD2=120°,利用ASA可證明△ADM≌△BDN,可得DD2=DD1,根據(jù)等腰三角形的性質(zhì)可得∠D1=D2=30°,即可證明∠D1=ADM,利用ASA可證明△ADM≌△ED1M,可得AM=EM,可證明AD=AE,即可證明點(diǎn)EAC的中點(diǎn),同理可得點(diǎn)FBC的中點(diǎn),可得答案.

如圖所示,作點(diǎn)D關(guān)于AC的對稱點(diǎn)D1,作點(diǎn)D關(guān)于BC的對稱點(diǎn),交ACBCM、N,連接,分別交AC、BC于點(diǎn)E、F

DE=D1E,DF=D2F,DMAC,DNBCDM=D1M,DN=D2N,

DE+DF+EF=D1E+EF+D2F=D1D2

D1D2即是△DEF的最小值,則點(diǎn)EF即為所求,

∵△ABC是等邊三角形,

∴∠A=B=60°,

∴∠ADM=BDN=90°-60°=30°

∴∠D1DD2=180°-30°-30°=120°,

∵點(diǎn)DAB中點(diǎn),

AD=BD,

在△BDN和△ADM中,,

∴△ADM≌△BDN,

DN=DM

DD2=DD1,

∴∠D1=D2=30°,

∴∠D1=ADM,

在△ADM和△ED1M中,

∴△ADM≌△ED1M,

AM=EM

∵∠ADM=30°,DMAC

AM=AD,

AE=AD,

∴點(diǎn)EAC中點(diǎn),

同理可得:點(diǎn)FBC中點(diǎn),

∴點(diǎn)E、F分別為ACBC中點(diǎn)時(shí),△DEF的周長最小.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD,F(xiàn)CD上一點(diǎn),∠EFD=60°,AEC=2CEF,若6°<BAE<15°,C的度數(shù)為整數(shù),則∠C的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連接BO并延長交⊙O于點(diǎn)E,連接AE,若AB=6,CD=1,則AE的長為(  )

A. 3 B. 8 C. 12 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖l,在四邊形ABCD中.∠DAB被對角線AC平分,且AC2=AB·AD,我們稱該四邊形為“可分四邊形”∠DAB稱為“可分角”.

1)如圖2,四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,求證:△DAC∽△CAB.

2)如圖2,四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,如果∠DCB=∠DAB 則∠DAB = .

3)現(xiàn)有四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,且AC=4.BC=2.∠D=90°,則AD= .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在中,,

1)用尺規(guī)在邊BC上求作一點(diǎn)P,使;(不寫作法,保留作圖痕跡)

2)連接AP當(dāng)為多少度時(shí),AP平分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示(每個(gè)小方格都是邊長為1個(gè)單位長度的正方形).

(1)將△ABC沿x軸方向向左平移6個(gè)單位,畫出平移后得到的△A1B1C1

(2)將△ABC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△AB2C2,并直接寫出點(diǎn)B2、C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某石化乙烯廠某車間生產(chǎn)甲、乙兩種塑料的相關(guān)信息如下表,請你解答下列問題:

出廠價(jià)

成本價(jià)

排污處理費(fèi)

甲種塑料

2100(元/噸)

800(元/噸)

200(元/噸)

乙種塑料

2400(元/噸)

1100(元/噸)

100(元/噸)

另每月還需支付設(shè)備管理、維護(hù)費(fèi)20000

(1)設(shè)該車間每月生產(chǎn)甲、乙兩種塑料各x噸,利潤分別為y1元和y2元,分別求出y1y2x的函數(shù)關(guān)系式(注:利潤=總收入-總支出);

(2)已知該車間每月生產(chǎn)甲、乙兩種塑料均不超過400噸,若某月要生產(chǎn)甲、乙兩種塑料共700噸,求該月生產(chǎn)甲、乙塑料各多少噸時(shí),獲得的總利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,完成任務(wù):

自相似圖形

定義:若某個(gè)圖形可分割為若干個(gè)都與它相似的圖形,則稱這個(gè)圖形是自相似圖形.例如:正方形ABCD中,點(diǎn)E、F、G、H分別是AB、BC、CD、DA邊的中點(diǎn),連接EG,HF交于點(diǎn)O,易知分割成的四個(gè)四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.

任務(wù):

(1)圖1中正方形ABCD分割成的四個(gè)小正方形中,每個(gè)正方形與原正方形的相似比為   

(2)如圖2,已知ABC中,ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)ABC也是“自相似圖形”,他的思路是:過點(diǎn)C作CDAB于點(diǎn)D,則CD將ABC分割成2個(gè)與它自己相似的小直角三角形.已知△ACD∽△ABC,則ACD與ABC的相似比為   

(3)現(xiàn)有一個(gè)矩形ABCD是自相似圖形,其中長AD=a,寬AB=b(a>b).

請從下列A、B兩題中任選一條作答:我選擇   題.

A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個(gè)全等矩形,且與原矩形都相似,則a=   (用含b的式子表示);

如圖3﹣2若將矩形ABCD縱向分割成n個(gè)全等矩形,且與原矩形都相似,則a=   (用含n,b的式子表示);

B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個(gè)全等矩形,再將剩余的部分橫向分割成3個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含b的式子表示);

如圖4﹣2,若將矩形ABCD先縱向分割出m個(gè)全等矩形,再將剩余的部分橫向分割成n個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含m,n,b的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知某市2017年企業(yè)用水量x(噸)與該月應(yīng)交的水費(fèi)y(元)之間的函數(shù)關(guān)系如圖所示.

1)求y關(guān)于x的函數(shù)關(guān)系式;

2)若某企業(yè)201710月份的水費(fèi)為620元,求該企業(yè)201710月份的用水量;

查看答案和解析>>

同步練習(xí)冊答案