【題目】設(shè)是的平均數(shù),即,則方差,它反映了這組數(shù)的波動(dòng)性,
(1)證明:對(duì)任意實(shí)數(shù)a,x1a,x2a,…,xna,與x1,x2,…,xn 方差相同;
(2)證明;
(3)以下是我校初三(1)班 10 位同學(xué)的身高(單位:厘米):
169,172,163,173,175,168,170,167,170,171,計(jì)算這組數(shù)的方差.
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)10.16
【解析】
(1)根據(jù)方差的計(jì)算公式分別求出兩組數(shù)據(jù)的方程進(jìn)行比較即可;
(2)利用完全平方差公式對(duì)式子進(jìn)行整理即可證得結(jié)論;
(3)根據(jù)(1)和(2)的結(jié)論進(jìn)行計(jì)算即可.
(1)證明:設(shè),,…,的平均數(shù)為,方差為;x1a,x2a,…,xna的平均數(shù)為,方差為. 則:
,
,
∴
,
∴對(duì)任意實(shí)數(shù)a,x1a,x2a,…,xna與x1,x2,…,xn 方差相同;
(2)證明如下:
(3)解:根據(jù)(1)的結(jié)論,將這10個(gè)數(shù)都減去170,得:
1 2 7 3 5 2 0 3 0 1
則,再由(2)得:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已如如圖1,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(6,0)、點(diǎn)B的坐標(biāo)為(0,8),點(diǎn)C在y軸上,作直線(xiàn)AC.點(diǎn)B關(guān)于直線(xiàn)AC的對(duì)稱(chēng)點(diǎn)B′剛好在x軸上,連接CB′.
(1)寫(xiě)出點(diǎn)B′的坐標(biāo),并求出直線(xiàn)AC對(duì)應(yīng)的函數(shù)表達(dá)式;
(2)點(diǎn)D在線(xiàn)段AC上,連接DB、DB′、BB′,當(dāng)△DBB′是等腰直角三角形時(shí),求點(diǎn)D坐標(biāo);
(3)如圖2,在(2)的條件下,點(diǎn)P從點(diǎn)B出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度向原點(diǎn)O運(yùn)動(dòng),到達(dá)點(diǎn)O時(shí)停止運(yùn)動(dòng),連接PD,過(guò)D作DP的垂線(xiàn),交x軸于點(diǎn)Q,問(wèn)點(diǎn)P運(yùn)動(dòng)幾秒時(shí)△ADQ是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校七、八年級(jí)各有10名同學(xué)參加市級(jí)數(shù)學(xué)競(jìng)賽,各參賽選手的成績(jī)?nèi)缦拢▎挝唬悍郑?/span>
七年級(jí):89,92,92,92,93,95,95,96,98,98
八年級(jí):88,93,93,93,94,94,95,95,97,98
整理得到如下統(tǒng)計(jì)表
年級(jí) | 最高分 | 平均分 | 中位數(shù) | 眾數(shù) | 方差 |
七年級(jí) | 98 | 94 | a | m | 7.6 |
八年級(jí) | 98 | n | 94 | 93 | 6.6 |
根據(jù)以上信息,完成下列問(wèn)題
(1)填空:a= ;m= ;n= ;
(2)兩個(gè)年級(jí)中, 年級(jí)成績(jī)更穩(wěn)定;
(3)七年級(jí)兩名最高分選手分別記為:A1,A2,八年級(jí)第一、第二名選手分別記為B1,B2,現(xiàn)從這四人中,任意選取兩人參加市級(jí)經(jīng)驗(yàn)交流,請(qǐng)用樹(shù)狀圖法或列表法求出這兩人分別來(lái)自不同年級(jí)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點(diǎn)E,連接EO并延長(zhǎng)交BC的延長(zhǎng)線(xiàn)于點(diǎn)D,點(diǎn)P為BC的中點(diǎn),連接EP,AD.
(1)求證:PE是⊙O的切線(xiàn);
(2)若⊙O的半徑為3,∠B=30°,求P點(diǎn)到直線(xiàn)AD的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形ABCD中AD∥BC,邊AB=4,BC=8.將此長(zhǎng)方形沿EF折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)G處.
(1)試判斷△BEF的形狀,并說(shuō)明理由;
(2)求△BEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)為平行四邊形的邊上一動(dòng)點(diǎn),過(guò)點(diǎn)作直線(xiàn)垂直于,且直線(xiàn)與平行四邊形的另一邊交于點(diǎn).當(dāng)點(diǎn)從勻速運(yùn)動(dòng)時(shí),設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為,的面積為,能大致反映與函數(shù)關(guān)系的圖象是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A是雙曲線(xiàn)在第一象限上的一動(dòng)點(diǎn),連接AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為斜邊作等腰Rt△ABC,點(diǎn)C在第二象限,隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也不斷的變化,但始終在一函數(shù)圖象上運(yùn)動(dòng),則這個(gè)函數(shù)的解析式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,BC=20cm,P、Q、M、N分別從A、B、C、D出發(fā)沿AD、BC、CB、DA方向在矩形的邊上同時(shí)運(yùn)動(dòng),當(dāng)有一個(gè)點(diǎn)先到達(dá)所在運(yùn)動(dòng)邊的另一個(gè)端點(diǎn)時(shí)即停止.已知在相同時(shí)間內(nèi),若BQ=xcm(x≠0),則AP=2xcm,CM=3xcm,DN=x2cm.
(Ⅰ)當(dāng)x為何值時(shí),AP、ND長(zhǎng)度相等?
(Ⅱ)當(dāng)x為何值時(shí),以PQ、MN為兩邊,以矩形的邊(AD或BC)的一部分為第三邊能構(gòu)成一個(gè)三角形?
(Ⅲ)當(dāng)x為何值時(shí),以P、Q、M、N為頂點(diǎn)的四邊形是平行四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)(a≠0)經(jīng)過(guò)A(﹣1,0)、B(3,0)、C(0,﹣3)三點(diǎn),直線(xiàn)l是拋物線(xiàn)的對(duì)稱(chēng)軸.
(1)求拋物線(xiàn)的函數(shù)關(guān)系式;
(2)設(shè)點(diǎn)P是直線(xiàn)l上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)P到點(diǎn)A、點(diǎn)B的距離之和最短時(shí),求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M也是直線(xiàn)l上的動(dòng)點(diǎn),且△MAC為等腰三角形,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)M的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com