【題目】如圖,ADABC的角平分線,DEAB于點EDFAC于點F,連接EFAD于點G

1)求證:AD垂直平分EF;

2)若BAC=60°,猜測DGAG間有何數(shù)量關系?請說明理由.

【答案】(1)、證明過程見解析;(2)、AG=3DG,證明過程見解析

【解析】

試題分析:(1)、根據(jù)角平分線的性質得出DE=DF,AED=AFD=90°,從而得出DEF=DFE,則AEF=AFE,從而說明AE=AF,即點A、D都在EF的垂直平分線上,得出答案;(2)、根據(jù)BAC=60°AD平分BAC得出AD=2DE,根據(jù)EGD=90°,DEG=30°得出DE=2DG,從而說明AD=4DG,即AG=3DG.

試題解析:(1)、ADABC的角平分線,DEAB,DFAC, DE=DFAED=AFD=90°,

∴∠DEF=DFE,∴∠AEF=AFE,AE=AF AD都在EF的垂直平分線上,

AD垂直平分EF

(2)、AG=3DG

∵∠BAC=60°,AD平分BAC, ∴∠EAD=30°,AD=2DE,EDA=60°,

ADEF,∴∠EGD=90°∴∠DEG=30° DE=2DG,AD=4DG AG=3DG

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形ABCD中,AB=10cm,BC=8cm,點E是CD的中點,動點P從A點出發(fā),以每秒2cm的速度沿ABCE運動,最終到達點E.若點P運動的時間為x秒,那么當x= 時,APE的面積等于32.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCDA=60°,B=D=90°AB=2,CD=1,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點EAOB的平分線上一點,ECOAEDOB,垂足分別是CD

1ECDEDC相等嗎?說明理由.

2OCOD相等嗎?說明理由.

3OE是線段CD的垂直平分線嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列計算正確的是( )
A.a+a2=a3
B.a6b÷a2=a3b
C.(a﹣b)2=a2﹣b2
D.(﹣ab32=a2b6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】三角形一邊上的中線把三角形分成的兩個三角形的面積關系為_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,設圖中每個小正方形的邊長為1,

1)請畫出ABC關于y軸對稱圖形ABC,其中ABC的對稱點分別為A’B’C’)

2直接寫出A’B’C’的坐標:A’B’C’

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商品進價200元,標價300元,商場規(guī)定可以打折銷售,但其利潤不能低于5%,該商品最多可以 折.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC的一個外角為50°,則ABC一定是__________ 角形

查看答案和解析>>

同步練習冊答案