精英家教網 > 初中數學 > 題目詳情
(2012•臥龍區(qū)二模)如圖,在平面直角坐標系中,O為原點,已 知A(2,0)、C(1,3
3
),將△OAC繞AC的中點旋轉180°,點O落到點B的位置,拋物線y=ax2-2
3
x
經過點A,點D是拋物線的頂點.
(1)求拋物線的解析式;
(2)判斷點B是否在拋物線上;
(3)若點P是線段OA上的點,且∠APD=∠OAB,求點P的坐標;
(4)若點P是x軸上的點,以P、A、D為平行四邊形的三個頂點作平行四邊形,使該平行四邊形的另一個頂點在y軸上,請直接寫出點P的坐標.
分析:(1)將A點的坐標代入y=ax2-2
3
x,即可得出拋物線的解析式;
(2)先根據旋轉的性質得出四邊形OABC是平行四邊形,OA=2,因此將C點向右平移2個單位即可得出B點的坐標,然后將B點的坐標代入拋物線的解析式中即可判斷出B是否在拋物線上;
(3)先根據二次函數的性質求出頂點D的坐標,然后求出OB、AD的長,當∠APD=∠OAB時,可得出△APD∽△OAB,進而可得出關于AP,AD、OA、OB的比例關系式.設出P點的坐標,然后用P的橫坐標表示出AP的長,即可根據上面的比例關系式求出P點的坐標;
(4)根據平行四邊形的性質,分別以AP,AD,DP為對角線分三種情況進行分析即可求得答案.
解答:解:(1)∵拋物線y=ax2-2
3
x經過點A(2,0),
∴4a-4
3
=0,
解得a=
3

∴拋物線的解析式為y=
3
x2-2
3
x;

(2)∵將△OAC繞AC的中點旋轉180°,點O落到點B的位置,
∴△ACO≌△CAB,
∴AO=CB,CO=AB,
∴四邊形OABC是平行四邊形,
∴BC∥OA,且BC=OA.
∵A(2,0)、C(1,3
3
),
∴xB=xC+2=3,yB=yC=3
3
,
∴B(3,3
3
).
將B(3,3
3
)代入y=
3
x2-2
3
x,等式成立,
∴點B在拋物線上;

(3)分別過點B、D作x軸的垂線,垂足分別為E、F,
由y=
3
x2-2
3
x,可求得頂點D的坐標為(1,-
3
),
∵B(3,3
3
),
∴在Rt△BOE和Rt△DAF中,
tan∠BOE=
BE
OE
=
3
3
3
=
3
,
tan∠DAF=
DF
AF
=
3
2-1
=
3
,
∴∠BOE=∠DAF=60°,
又∵∠APD=∠OAB,
∴△APD∽△OAB,
AP
OA
=
AD
OB

∵OA=2,OB=
32+(3
3
)
2
=6
,AD=
(2-1)2+(
3
)
2
=2

AP=
AD
OB
×OA=
2
6
×2=
2
3
,
OP=2-
2
3
=
4
3
,
∴P(
4
3
,0);

(4)設以P、A、D為平行四邊形的第四個頂點為Q,分三種情況進行討論:

①如圖1,以DP為對角線,此時QD=AP=1,因此OP=OA-AP=2-1=1,P點的坐標為(1,0);
②如圖2,以AD為對角線,此時QD=AP=1,因此OP=OA+AP=2+1=3,P點的坐標為(3,0);
③如圖3,以AP為對角線,此時D,Q兩點的縱坐標互為相反數,因此Q點的坐標為(0,
3
),由于AD與PQ平行且相等,將A點先向左平移1個單位,再向下平移
3
個單位得到點D,所以將Q點先向左平移1個單位,再向下平移
3
個單位得到點P,P點的坐標為(0-1,
3
-
3
),即(-1,0).
因此共有3個符合條件的P點,其坐標為:(-1,0)或(1,0)或(3,0).
點評:本題是二次函數的綜合題型,其中涉及到運用待定系數法求二次函數的解析式,二次函數圖象上點的坐標特征,旋轉的性質,相似三角形的判定與性質,平行四邊形的性質等知識,綜合性較強,運用分類討論、數形結合的思想方法是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2012•臥龍區(qū)二模)某班四個植樹小組參加了綠化家鄉(xiāng)的植樹活動,其中三個小組植樹的棵數分別為:8、10、12,另一個小組的植樹棵數與它們中的一組相同,且這四個數據的眾數與平均數相等,則這四個數據的中位數是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•臥龍區(qū)二模)在
6
、
12
、
24
中能與
3
合并的根式是
12
12

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•臥龍區(qū)二模)當實數x的取值使得
x-2
有意義時,函數y=4x+1中y的取值范圍是
y≥9
y≥9

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•臥龍區(qū)二模)如圖,是二次函數y=ax2+bx+c的圖象,則點P(a+b,ac)在第
象限.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•臥龍區(qū)二模)計算:2cos30°+3tan60°-(π-1)0-
27
+(
1
2
-2

查看答案和解析>>

同步練習冊答案