【題目】如圖,在△ABC中,AB≠AC.D、E分別為邊AB、AC上的點(diǎn).AC=3AD,AB=3AE,點(diǎn)F為BC邊上一點(diǎn),添加一個條件: , 可以使得△FDB與△ADE相似.(只需寫出一個)

【答案】DF∥AC,或∠BFD=∠A
【解析】解:DF∥AC,或∠BFD=∠A. 理由:∵∠A=∠A, = =
∴△ADE∽△ACB,
∴①當(dāng)DF∥AC時,△BDF∽△BAC,
∴△BDF∽△EAD.
②當(dāng)∠BFD=∠A時,∵∠B=∠AED,
∴△FBD∽△AED.
所以答案是DF∥AC,或∠BFD=∠A.
【考點(diǎn)精析】掌握相似三角形的判定是解答本題的根本,需要知道相似三角形的判定方法:兩角對應(yīng)相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似; 兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS);三邊對應(yīng)成比例,兩三角形相似(SSS).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一臺自動測溫儀記錄的圖象,它反映了我市冬季某天氣溫T隨時間t變化而變化的關(guān)系,觀察圖象得到下列信息,其中錯誤的是( )

A. 凌晨4時氣溫最低為-3℃

B. 14時氣溫最高為8℃

C. 0時至14時,氣溫隨時間增長而上升

D. 14時至24時,氣溫隨時間增長而下降

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ADBC,AE平分BAC,B=70°,C=30°.求:

1BAE的度數(shù);

2DAE的度數(shù);

3探究:小明認(rèn)為如果條件B=70°,C=30°改成B-C=40°,也能得出DAE的度數(shù)?若能,請你寫出求解過程;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】本學(xué)期學(xué)校開展以感受中華傳統(tǒng)美德為主題的研學(xué)活動,組織150名學(xué)生參觀歷史博物館和民俗展覽館,每一名學(xué)生只能參加其中一項(xiàng)活動,共支付票款2000元,票價信息如下:

地點(diǎn)

票價

歷史博物館

10/

民俗展覽館

20/

(1)請問參觀歷史博物館和民俗展覽館的人數(shù)各是多少人?

(2)若學(xué)生都去參觀歷史博物館,則能節(jié)省票款多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五邊形的頂點(diǎn)依次編號為1,2,3,4,5.若從某一頂點(diǎn)開始,沿正五邊形的邊順時針方向行走,頂點(diǎn)編號的數(shù)字是幾,就走幾個邊長,則稱這種走法為一次移位.如:小宇在編號為3的頂點(diǎn)上時,那么他應(yīng)走3個邊長,即從3→4→5→1為第一次移位,這時他到達(dá)編號為1的頂點(diǎn);然后從1→2為第二次移位.若小宇從編號為4的頂點(diǎn)開始,第2018移位后,那么他所處的頂點(diǎn)的編號是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有理數(shù)的計算:

11﹣(﹣8+12+(﹣11);

2||;

3)﹣12﹣(1×[6+(﹣33];

4 ×(﹣625.5×8+25.5×8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,Aa,0),Cb2),且滿足,過C軸于B

1)求a,b的值;

2)在y軸上是否存在點(diǎn)P,使得△ABC和△OCP的面積相等,若存在,求出點(diǎn)P坐標(biāo),若不存在,試說明理由.

3)若過BBDACy軸于D,且AE,DE分別平分∠CAB,∠ODB,如圖2,圖3,

①求:∠CAB+∠ODB的度數(shù);

②求:∠AED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AD平分∠BAC,DE∥AC交AB于E,DFAB交AC于F,若AF=6,則四邊形AEDF的周長是(  。

A. 24 B. 28 C. 32 D. 36

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求證:兩邊分別相等且其中一組等邊的對角相等的兩個銳角三角形全等.

查看答案和解析>>

同步練習(xí)冊答案