【題目】閱讀材料,用配方法求最值.
已知a,b為非負實數(shù),∵a+b﹣2=()2+()2﹣2=(﹣)2≥0,∴a+b≥2,當且僅當“a=b”時,等號成立.示例:當x>0時,求y=x++1的最小值;
解:y=(x+)+1>2=3,當x=,即x=1時,y的最小值為3.
(1)探究:當x>0時,求y=的最小值;
(2)問題解決:隨著人們生活水平的提高,汽車已成為越來越多家庭的交通工具,假設(shè)某種汽車的購車費用為10萬元,每年應(yīng)繳保險費等各類費用共計0.4萬元,n年的保養(yǎng),維修費用總和為萬元,問這種汽車使用多少年報廢最合算(即使用多少年的年平均費用最少,年平均費用=所有費用:年數(shù)n)?最少年平均費用為多少萬元?
【答案】(1)x=1時,y的最小值為5;(2)n=10時,這種汽車使用10年報廢最合算,最少年平均費用為2.5萬元.
【解析】
(1)首先將原式化為,然后應(yīng)用配方法,求出當x>0時,原式的最小值即可.
(2)首先根據(jù)題意,求出年平均費用,然后應(yīng)用題中配方法,求出這種小轎車使用多少年報廢最合算,以及最少年平均費用為多少萬元即可.
(1)y==x+3+≥2+3=5,
∴當x=,即x=1時,y的最小值為5.
(2)年平均費用=(+0.4n+10)÷n=++≥2+==2+0.5=2.5,
∴當=時,
即n=10時,這種汽車使用10年報廢最合算,最少年平均費用為2.5萬元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是8×8的正方形網(wǎng)格,請在所給網(wǎng)格中按下列要求操作:
(1)在網(wǎng)格中建立平面直角坐標系,使點A的坐標為(﹣2,4),點B的坐標為(﹣4,2);
(2)在第二象限內(nèi)的格點上畫一點C,連接AC,BC,使△BC成為以AB為底的等腰三角形,且腰長是無理數(shù).
①此時點C的坐標為 ,△ABC的周長為 (結(jié)果保留根號);
②畫出△ABC關(guān)于y軸對稱的△A′B'C′(點A,B,C的對應(yīng)點分別A',B',C′),并寫出A′,B′,C′的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AH⊥BC,垂足為H,D為直線BC上一動點(不與點BC重合),在AD的右側(cè)作△ADE,使得AE=AD,∠DAE=∠BAC,連接CE.
(1)當D在線段BC上時,求證:△BAD≌△CAE;
(2)當點D運動到何處時,AC⊥DE,并說明理由;
(3)當CE∥AB時,若△ABD中最小角為20°,試探究∠ADB的度數(shù)(直接寫出結(jié)果,無需寫出求解過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD,AE分別是△ABC的角平分線和高線,∠B=45°,∠C=73°.
(1)求∠ADB的度數(shù);
(2)求∠DAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的三個頂點分別為, , .若反比例函數(shù)在第一象限內(nèi)的圖象與△ABC有公共點,則k的取值范圍是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級學(xué)生小麗、小強和小紅到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作,已知該水果的進價為8元/千克,下面是他們在活動結(jié)束后的對話.
小麗:如果以10元/千克的價格銷售,那么每天可售出300千克.
小強:如果以13元/千克的價格銷售,那么每天可售出240千克.
小紅:通過調(diào)查驗證,我發(fā)現(xiàn)每天的銷售量y(千克)與銷售單價x(元)之間存在一次函數(shù)關(guān)系,每天銷售200千克以上.
(1)求每天的銷售量y(千克)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(2)該超市銷售這種水果每天獲取的利潤達到1040元,那么銷售單價為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】五一期間,小明一家一起去旅游,如圖是小明設(shè)計的某旅游景點的圖紙(網(wǎng)格是由相同的小正方形組成的,且小正方形的邊長代表實際長度100m),在該圖紙上可看到兩個標志性景點A,B.若建立適當?shù)钠矫嬷苯亲鴺讼,則點A(-3,1),B(-3,-3),第三個景點C(3,2)的位置已破損.
(1)請在圖中標出景點C的位置;
(2)小明想從景點B開始游玩,途經(jīng)景點A,最后到達景點C,求小明一家最短的行走路程(參考數(shù)據(jù):≈6,結(jié)果保留整數(shù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com