【題目】如圖,在△ABC中,AB=AC=6,∠BAC=120°,點(diǎn)D是AB邊上的點(diǎn), = ,點(diǎn)P為底邊BC上的一動(dòng)點(diǎn),則△PDA周長的最小值為

【答案】2 +2
【解析】解:∵AB=AC=6, = , ∴AD=2,BD=4,
作A關(guān)于BC的對(duì)稱點(diǎn)A′,連接DA′交BC于P,
則DA′=PD+PA的最小值,
過A′作A′H⊥AB于H,
∵∠BAC=120°,
∴∠BAA′=60°,∠B=∠C=30°,
∴AA′=6,A′H=3 ,
∴DH=3﹣2=1,
∴A′D= =2 ,
∴△PDA周長的最小值=2 +2,
所以答案是:2 +2.

【考點(diǎn)精析】本題主要考查了等腰三角形的性質(zhì)和含30度角的直角三角形的相關(guān)知識(shí)點(diǎn),需要掌握等腰三角形的兩個(gè)底角相等(簡稱:等邊對(duì)等角);在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】加工一根軸,圖上標(biāo)明的直徑加工要求是(單位:mm),則這種零件的標(biāo)準(zhǔn)尺寸是________mm,合格產(chǎn)品的最大直徑是________mm,最小直徑是________mm.如果加工成的軸的直徑是44.8毫米,它是________(合格不合格”)產(chǎn)品.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車專賣店銷售A,B兩種型號(hào)的新能源汽車.上周售出1輛A型車和3輛B型車,銷售額為96萬元;本周已售2輛A型車和1輛B型車,銷售額為62萬元.

(1)求每輛A型車和B型車的售價(jià)各多少萬元.

(2)甲公司擬向該店購買A,B兩種型號(hào)的新能源汽車共6,購費(fèi)不少于130萬元,且不超過140萬元. 則有哪幾種購車方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車專賣店銷售A,B兩種型號(hào)的新能源汽車.上周售出1輛A型車和3輛B型車,銷售額為96萬元;本周已售2輛A型車和1輛B型車,銷售額為62萬元.

(1)求每輛A型車和B型車的售價(jià)各多少萬元.

(2)甲公司擬向該店購買A,B兩種型號(hào)的新能源汽車共6,購費(fèi)不少于130萬元,且不超過140萬元. 則有哪幾種購車方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校需要添置某種教學(xué)儀器,現(xiàn)有兩種添置方法.方案1:到廠商家購買,每件需要8元和一次性的運(yùn)費(fèi)2000元;方案2:學(xué)校自己制作,每件4元,另外購置制作工具的費(fèi)用4200.現(xiàn)所需教學(xué)儀器件數(shù)不明確.

請(qǐng)你給校長出出主意,選擇哪種方案更節(jié)約費(fèi)用?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校為了解學(xué)生“自主學(xué)習(xí)、合作交流”的情況,對(duì)八年級(jí)各班部分同學(xué)進(jìn)行了一段時(shí)間的跟蹤調(diào)査,將調(diào)查結(jié)果(A:特別好; B:較好; C:一般; D:較差)繪制成以下兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖中提供的信息,解答下列問題:
(1)此次跟蹤調(diào)查的學(xué)生有人;扇形統(tǒng)計(jì)圖中,D類所占圓心角為度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)如果該校八年級(jí)共有學(xué)生360人,試估計(jì)A類學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四邊形ABCD是菱形,AD=5,過點(diǎn)DAB的垂線DH,垂足為H,交對(duì)角線ACM,連接BM,且AH=3

1)求證:DM=BM

2)求MH的長;

3如圖2,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿折線ABC方向以2個(gè)單位/秒的速度向終點(diǎn)C勻速運(yùn)動(dòng),設(shè)△PMB的面積為SS≠0),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,求St之間的函數(shù)關(guān)系式;

4)在(3)的條件下,當(dāng)點(diǎn)P在邊AB上運(yùn)動(dòng)時(shí)是否存在這樣的 t值,使∠MPB∠BCD互為余角,若存在,則求出t值,若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y1=﹣ax2+2ax﹣a﹣3(a>0)和y2=a(x+1)2﹣1(a>0)的頂點(diǎn)分別為M、N,與y軸分別交于E、F.

(1)①函數(shù)y1=﹣ax2+2ax﹣a﹣3(a>0)的最大值是;
②當(dāng)y1、y2的值都隨x的增大而增大時(shí),自變量x的取值范圍是
(2)當(dāng)EF=MN時(shí),求a值,并判斷四邊形EMFN是何種特殊的四邊形;
(3)若y2=a(x+1)2﹣1(a>0)的圖象與x軸的右交點(diǎn)為A(m,0),當(dāng)△AMN為等腰三角形時(shí),求方程a(x+1)2﹣1=0的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知斜坡AB長為80米,坡角(即∠BAC)為30°,BC⊥AC,現(xiàn)計(jì)劃在斜坡中點(diǎn)D處挖去部分坡體(用陰影表示)修建一個(gè)平行于水平線CA的平臺(tái)DE和一條新的斜坡BE.

(1)若修建的斜坡BE的坡角為45°,求平臺(tái)DE的長;(結(jié)果保留根號(hào))
(2)一座建筑物GH距離A處36米遠(yuǎn)(即AG為36米),小明在D處測得建筑物頂部H的仰角(即∠HDM)為30°.點(diǎn)B、C、A、G、H在同一個(gè)平面內(nèi),點(diǎn)C、A、G在同一條直線上,且HG⊥CG,求建筑物GH的高度.(結(jié)果保留根號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案