【題目】計算下列各題
(1)1+(﹣2)+|﹣2﹣3|﹣5
(2)﹣24 ×[5﹣(﹣3)2]
(3)( +1 ﹣2.75)×(﹣24)+(﹣12016).
(4)[50﹣( + )×(﹣6)2]÷(﹣7)2

【答案】
(1)解:1+(﹣2)+|﹣2﹣3|﹣5

=1﹣2+5﹣5

=﹣1;


(2)解:﹣24 ×[5﹣(﹣3)2]

=﹣16﹣ ×[5﹣9]

=﹣16﹣ ×[﹣4]

=﹣16+2

=﹣14


(3)解:( +1 ﹣2.75)×(﹣24)+(﹣12016).

=﹣ ×24﹣1 ×24+2.75×24﹣1

=﹣3﹣32+66﹣1

=﹣36+66

=30;


(4)解:[50﹣( + )×(﹣6)2]÷(﹣7)2

=[50﹣( + )×36]÷49

=[50﹣ ×36+ ×36﹣ ×36]÷49

=(50﹣28+33﹣6)÷49

=49÷49

=1.


【解析】(1)先算絕對值,再算加減法;(2)(3)(4)先算乘方,再算乘除,最后算加減;同級運算,應(yīng)按從左到右的順序進行計算;如果有括號,要先做括號內(nèi)的運算.
【考點精析】根據(jù)題目的已知條件,利用有理數(shù)的四則混合運算的相關(guān)知識可以得到問題的答案,需要掌握在沒有括號的不同級運算中,先算乘方再算乘除,最后算加減.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上A點表示數(shù)a,B點表示數(shù)b,AB表示A點和B點之間的距離,C是AB的中點,且a、b滿足|a+3|+(b+3a)2=0.

(1)求點C表示的數(shù);
(2)點P從A點以3個單位每秒向右運動,點Q同時從B點以2個單位每秒向左運動,若AP+BQ=2PQ,求時間t;
(3)若點P從A向右運動,點M為AP中點,在P點到達點B之前:① 的值不變;②2BM﹣BP的值不變,其中只有一個正確,請你找出正確的結(jié)論并求出其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個三角形的三邊a,b,c能滿足a2+b2=nc2(n為正整數(shù)),那么這個三角形叫做“n階三角形”.如三邊分別為1、2、的三角形滿足12+22=1×(2,所以它是1階三角形,但同時也滿足(2+22=9×12,所以它也是9階三角形.顯然,等邊三角形是2階三角形,但2階三角形不一定是等邊三角形.

(1)在我們熟知的三角形中,何種三角形一定是3階三角形?

(2)若三邊分別是a,b,c(a<b<c)的直角三角形是一個2階三角形,求a:b:c.

(3)如圖1,直角ABC是2階三角形,AC<BC<AB,三條中線BD、AE、CF所構(gòu)成的三角形是何種三角形?四位同學(xué)作了猜想:

A同學(xué):是2階三角形但不是直角三角形;

B同學(xué):是直角三角形但不是2階三角形;

C同學(xué):既是2階三角形又是直角三角形;

D同學(xué):既不是2階三角形也不是直角三角形.

請你判斷哪位同學(xué)猜想正確,并證明你的判斷.

(4)如圖2,矩形OACB中,O為坐標(biāo)原點,A在y軸上,B在x軸上,C點坐標(biāo)是(2,1),反比例函數(shù)y=(k>0)的圖象與直線AC、直線BC交于點E、D,若ODE是5階三角形,直接寫出所有可能的k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了調(diào)查學(xué)生備戰(zhàn)中考體育的訓(xùn)練情況,特抽查了40名學(xué)生進行了模擬測試(滿分70分),體育組根據(jù)抽測成績制成如表格:

抽測成績/cm

50

54

59

62

67

70

人數(shù)

2

7

6

6

15

4

則這批考生模擬成績的中位數(shù)和眾數(shù)分別是( 。

A. 59,59B. 5962C. 62,67D. 62,62

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次800米的長跑比賽中,甲、乙兩人所跑的路程s(米)與各自所用時間t(秒)之間的函數(shù)圖象分別為線段OA和折線OBCD,則下列說法正確的是( )

A. 甲的速度隨時間的增加而增大

B. 乙的平均速度比甲的平均速度大

C. 在起跑后第180秒時,兩人相遇

D. 在起跑后第50秒時,乙在甲的前面

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,ACBC,AD平分BAC交BC于點D,DEAD交AB于點E,M為AE的中點,BFBC交CM的延長線于點F,BD=4,CD=3.下列結(jié)論①∠AED=ADC; ;ACBE=12;3BF=4AC,其中結(jié)論正確的個數(shù)有(

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,菱形ABCD的邊長為6,DAB=60°,點E是AB的中點,連接AC、EC.點Q從點A出發(fā),沿折線ADC運動,同時點P從點A出發(fā),沿射線AB運動,P、Q的速度均為每秒1個單位長度;以PQ為邊在PQ的左側(cè)作等邊PQF,PQF與AEC重疊部分的面積為S,當(dāng)點Q運動到點C時P、Q同時停止運動,設(shè)運動的時間為t.

(1)當(dāng)?shù)冗?/span>PQF的邊PQ恰好經(jīng)過點D時,求運動時間t的值;當(dāng)?shù)冗?/span>PQF的邊QF 恰好經(jīng)過點E時,求運動時間t的值;

(2)在整個運動過程中,請求出S與t之間的函數(shù)關(guān)系式和相應(yīng)的自變量t的取值范圍;

(3)如圖2,當(dāng)點Q到達C點時,將等邊PQF繞點P旋轉(zhuǎn)α°(0<α<360),直線PF分別與直線AC、直線CD交于點M、N.是否存在這樣的α,使CMN為等腰三角形?若存在,請直接寫出此時線段CM的長度;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一元二次方程x2﹣x=0,它的解是( )
A.0
B.1
C.0,﹣1
D.0,1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次函數(shù)y=2m+2x+4中,y隨x的增大而增大,那么m的值是( )

A.0 B.-1 C.-1.5 D.-2

查看答案和解析>>

同步練習(xí)冊答案