精英家教網 > 初中數學 > 題目詳情

如圖,矩形紙片ABCD中,AD=3cm,點E在BC上,將紙片沿AE折疊,使點B落在AC上的點F處,且
∠AEF=∠CEF,則AB的長是


  1. A.
    1cm
  2. B.
    數學公式cm
  3. C.
    2cm
  4. D.
    數學公式cm
B
分析:由矩形與折疊的性質,易求得∠AEB=60°,∠CAE=∠ACE=30°,根據等角對等邊,可得AE=CE,由三角函數的性質,可得AE=2BE,可得BC=AD=3BE,即可求得BE的長,繼而求得AB的長.
解答:∵四邊形ABCD是矩形,
∴∠B=90°,BC=AD=3cm,
由折疊的性質可得:∠AEB=∠AEF,∠BAE=∠CAE,
∵∠AEF=∠CEF,
∴∠AEB=∠AEF=∠CEF=×180°=60°,
∴∠BAE=90°-∠AEB=30°,
∴AB=BE•tan∠AEB=BE,AE=2BE,∠CAE=∠BAE=30°,
∴∠BAC=60°,
∴∠ACB=90°-∠BAC=30°,
∴∠CAE=∠ACE,
∴AE=CE,
∴CE=2BE,
∴BE=BE+CE=3BE=3cm,
∴BE=1cm,
∴AB=BE=(cm).
故選B.
點評:此題考查了折疊的性質、矩形的性質、等腰三角形的判定與性質以及三角函數的知識.此題難度適中,注意掌握折疊前后圖形的對應關系,注意數形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,矩形紙片ABCD中,AB=4,BC=4
3
,將矩形沿對角線AC剪開,解答以下問題:
(1)在△ACD繞點C順時針旋轉60°,△A1CD1是旋轉后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對角線AC向下翻折(點A、點C位置不動,△ACD和△ABC落在同一平面內),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
(3)將△ACD沿CB向左平移,設平移的距離為x(0≤x≤4
3
),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關于x的函數關系式.
精英家教網精英家教網精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,矩形紙片ABCD中AB=6cm,BC=10cm,小明同學先折出矩形紙片ABCD的對角線AC,再分別精英家教網把△ABC、△ADC沿對角線AC翻折交AD、BC于點F、E.
(1)判斷小明所折出的四邊形AECF的形狀,并說明理由;
(2)求四邊形AECF的面積.

查看答案和解析>>

科目:初中數學 來源:第2章《二次函數》中考題集(37):2.7 最大面積是多少(解析版) 題型:解答題

如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對角線AC剪開,解答以下問題:
(1)在△ACD繞點C順時針旋轉60°,△A1CD1是旋轉后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對角線AC向下翻折(點A、點C位置不動,△ACD和△ABC落在同一平面內),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
(3)將△ACD沿CB向左平移,設平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關于x的函數關系式.


查看答案和解析>>

科目:初中數學 來源:第25章《圖形的變換》中考題集(30):25.3 軸對稱變換(解析版) 題型:解答題

如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對角線AC剪開,解答以下問題:
(1)在△ACD繞點C順時針旋轉60°,△A1CD1是旋轉后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對角線AC向下翻折(點A、點C位置不動,△ACD和△ABC落在同一平面內),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
(3)將△ACD沿CB向左平移,設平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關于x的函數關系式.


查看答案和解析>>

科目:初中數學 來源:2007年全國中考數學試題匯編《二次函數》(06)(解析版) 題型:解答題

(2007•益陽)如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對角線AC剪開,解答以下問題:
(1)在△ACD繞點C順時針旋轉60°,△A1CD1是旋轉后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對角線AC向下翻折(點A、點C位置不動,△ACD和△ABC落在同一平面內),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
(3)將△ACD沿CB向左平移,設平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關于x的函數關系式.


查看答案和解析>>

同步練習冊答案