【題目】如圖,四邊形ABCD中,∠ABC=90°,AC=BD,AC⊥BD,若AB=4, AD=5,則DC的長 ( ).

A. 7 B. C. D. 2

【答案】B

【解析】解:過DDFBABA的延長線于FBEAC,∴∠EBC+∠BCE=90°∵∠ABC=90°,∴∠ABD+∠EBC=90°,∴∠ABE=∠BCA在△BFD和△CBA中,∵ABE=∠BCA,F=∠ABC=90°,BD=CA,∴△BFD≌△CBA,DF=AB=4,BF=BCRt△ADF中,∵AD=5,DF=4,AF=3,BC=3+4=7∵∠DEC=90°,DC2=DE2+EC2=(BD-BE)2+EC2=(AC-BE)2+EC2

=AC2-2ACBE+BE2+EC2

= AC2-2ABBC+BC2

=

=58

DC=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知ABC的三個頂點的坐標(biāo)分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).

(1)若ABC經(jīng)過平移后得到,已知點的坐標(biāo)為(4,0),寫出頂點,的坐標(biāo);

(2)若ABC和關(guān)于原點O成中心對稱圖形,寫出的各頂點的坐標(biāo);

(3)將ABC繞著點O按順時針方向旋轉(zhuǎn)90°得到,寫出的各頂點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖.電路圖上有四個開關(guān)A、B、C、D和一個小燈泡,閉合開關(guān)D或同時閉合開關(guān)A,B,C都可使小燈泡發(fā)光.

(1)任意閉合其中一個開關(guān),則小燈泡發(fā)光的概率等于 ;

(2)任意閉合其中兩個開關(guān),請用畫樹狀圖或列表的方法求出小燈泡發(fā)光的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將直線y=﹣3x沿著y軸向上平移2個單位,所得直線的解析式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知yx+2成正比例,且當(dāng)x=3時,y=﹣10,求yx的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系的第二象限內(nèi)有一點P,點Px軸的距離為2,到y軸的距離為3,則點P的坐標(biāo)是( )

A.(32)B.(3,-2)C.(2,-3)D.(23)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品的進(jìn)價為每件50元,售價為每件60元,每個月可賣出200件;如果每件商品的售價每上漲1元.則每個月少賣10件.設(shè)每件商品的售價上漲x元(x為正整數(shù)),每個月的銷售利潤為y元.

(1)求y與x的函數(shù)關(guān)系式;

(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?

(3)若每個月的利潤不低于2160元,售價應(yīng)在什么范圍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,規(guī)定把一個點先繞原點逆時針旋轉(zhuǎn)45°,再作出旋轉(zhuǎn)后的點關(guān)于原點的對稱點,這稱為一次變換,已知點A的坐標(biāo)為(﹣1,0),則點A經(jīng)過連續(xù)2016次這樣的變換得到的點的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料并解決有關(guān)問題:我們知道|x|=
所以當(dāng)x>0時, = =1; 當(dāng)x<0時, = =﹣1.現(xiàn)在我們可以用這個結(jié)論來解決下面問題:
(1)已知a,b是有理數(shù),當(dāng)ab≠0時, + =
(2)已知a,b是有理數(shù),當(dāng)abc≠0時, + + =;
(3)已知a,b,c是有理數(shù),a+b+c=0,abc<0,則 + + =

查看答案和解析>>

同步練習(xí)冊答案