【題目】如圖,正方形ABCD的對角線AC,BD相交于點O,延長CB至點F,使CF=CA,連接AF,∠ACF的平分線分別交AF,AB,BD于點E,N,M,連接EO.
(1)已知BD=,求正方形ABCD的邊長;
(2)猜想線段EM與CN的數量關系并加以證明.
【答案】(1)1;(2)CN=CM.
【解析】
試題分析:(1)根據正方形的性質以及勾股定理即可求得;
(2)根據等腰三角形三線合一的性質證得CE⊥AF,進一步得出∠BAF=∠BCN,然后通過證得△ABF≌△CBN得出AF=CN,進而證得△ABF∽△COM,根據相似三角形的性質和正方形的性質即可證得CN=CM.
試題解析:(1)∵四邊形ABCD是正方形,∴△ABD是等腰直角三角形,∴2AB2=BD2,∵BD=,∴AB=1,∴正方形ABCD的邊長為1;
(2)CN=CM.
證明:∵CF=CA,AF是∠ACF的平分線,∴CE⊥AF,∴∠AEN=∠CBN=90°,∵∠ANE=∠CNB,∴∠BAF=∠BCN,在△ABF和△CBN中,∵∠BAF=∠BCN,∠ABF=∠CBN,AB=BC,∴△ABF≌△CBN(AAS),∴AF=CN,∵∠BAF=∠BCN,∠ACN=∠BCN,∴∠BAF=∠OCM,∵四邊形ABCD是正方形,∴AC⊥BD,∴∠ABF=∠COM=90°,∴△ABF∽△COM,∴,∴,即CN=CM.
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點M是邊BC上一點,BM=3,點N是線段MC上的一個動點,連接DN,ME,DN與ME相交于點O.若△OMN是直角三角形,則DO的長是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,正方形ABCD的位置如圖所示,點A的坐標為(1,0),點D的坐標為(0,2).延長CB交x軸于點A1,作第1個正方形A1B1C1C;延長C1B1交x軸于點A2,作第2個正方形A2B2C2C1,…,按這樣的規(guī)律進行下去,第2016個正方形的面積是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,點P在AD上,且不與A、D重合,BP的垂直平分線分別交CD、AB于E、F兩點,垂足為Q,過E作EH⊥AB于H.
(1)求證:HF=AP;
(2)若正方形ABCD的邊長為12,AP=4,求線段EQ的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖.△ABC中,AB=AC,AB的垂直平分線交AC于P點,若AB=6cm,BC=4cm,△PBC的周長等于( )
A.4cm
B.6cm
C.8cm
D.10cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC和△DEC中,已知AB=DE,還需添加兩個條件才能使△ABC≌△DEC,不能添加的一組條件是( )
A.BC=EC,∠B=∠E
B.BC=EC,AC=DC
C.BC=DC,∠A=∠D
D.∠B=∠E,∠A=∠D
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】乘法公式的探究與應用:
(1)如圖甲,邊長為a的大正方形中有一個邊長為b的小正方形,請你寫出陰影部分面積是(寫成兩數平方差的形式)
(2)小穎將陰影部分裁下來,重新拼成一個長方形,如圖乙,則長方形的長是 , 寬是 , 面積是(寫成多項式乘法的形式).
(3)比較甲乙兩圖陰影部分的面積,可以得到公式(兩個) 公式1:
公式2:
(4)運用你所得到的公式計算:10.3×9.7.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com