【題目】如圖,菱形ABCD對(duì)角線交于點(diǎn)O,BE∥AC,AE∥BD,EO與AB交于點(diǎn)F.
(1)求證:EO=DC;
(2)若菱形ABCD的邊長(zhǎng)為10,∠EBA=60°,求:菱形ABCD的面積.
【答案】(1)見解析;(2)50
【解析】
(1)首先證明四邊形AEBO是平行四邊形,再證明是矩形可得EO=AB,又因?yàn)?/span>AB=CD,所以EO=DC,問(wèn)題得證;(2)根據(jù)菱形ABCD的面積=△ABD的面積+△BCD的面積=2×△ABD的面積計(jì)算即可.
(1)證明:∵BE∥AC,AE∥BD
∴四邊形AEBO是平行四邊形
又∵菱形ABCD對(duì)角線交于點(diǎn)O
∴AC⊥BD
即∠AOB=90°
∴四邊形AEBO是矩形
∴EO=AB
∵四邊形ABCD是菱形
∴AB=DC
∴EO=DC.
(2)解:由(1)知四邊形AEBO是矩形
∴∠EBO=90°
∵∠EBA=60°
∴∠ABO=30°
在Rt△ABO中,AB=10,∠ABO=30°
∴AO=5,BO=5
∴BD=10
∴菱形ABCD的面積=△ABD的面積+△BCD的面積
=2×△ABD的面積
=2××10×5
=50.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)D是 上一點(diǎn),且∠BDE=∠CBE,BD與AE交于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若BD平分∠ABE,求證:DE2=DFDB;
(3)在(2)的條件下,延長(zhǎng)ED,BA交于點(diǎn)P,若PA=AO,DE=2,求PD的長(zhǎng)和⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸上點(diǎn)A、C對(duì)應(yīng)的數(shù)分別為a、c,且a、c,滿足|a+4|+(c﹣1)2018=0,點(diǎn)O對(duì)應(yīng)的數(shù)為0,點(diǎn)B對(duì)應(yīng)的數(shù)為﹣3.
(1)求數(shù)a、c的值;
(2)點(diǎn)A,B沿?cái)?shù)軸同時(shí)出發(fā)向右勻速運(yùn)動(dòng),點(diǎn)A速度為2個(gè)單位長(zhǎng)度/秒,點(diǎn)B速度為1個(gè)單位長(zhǎng)度/秒,幾秒后,點(diǎn)A追上點(diǎn)B;
(3)在(2)的條件下,若運(yùn)動(dòng)時(shí)間為t秒,運(yùn)動(dòng)過(guò)程中,當(dāng)A,B兩點(diǎn)到原點(diǎn)O的距離相等時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四邊形ABCD中,AC⊥BD,AB=AD,要使四邊形ABCD是菱形,只需添加一個(gè)條件,這個(gè)條件可以是_____(只要填寫一種情況).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】?jī)蓚(gè)全等的△ABC和△DEF重疊在一起,固定△ABC,將△DEF進(jìn)行如下變換:
(1)如圖1,△DEF沿直線CB向右平移(即點(diǎn)F在線段CB上移動(dòng)),連接AF、AD、BD,請(qǐng)直接寫出S△ABC與S四邊形AFBD的關(guān)系;
(2)如圖2,當(dāng)點(diǎn)F平移到線段BC的中點(diǎn)時(shí),四邊形AFBD是什么特殊四邊形?請(qǐng)給出證明;
(3)當(dāng)點(diǎn)F平移到線段BC的中點(diǎn)時(shí),若四邊形AFBD為正方形,猜想△ABC應(yīng)滿足什么條件?請(qǐng)直接寫出結(jié)論:在此條件下,將△DEF沿DF折疊,點(diǎn)E落在FA的延長(zhǎng)線上的點(diǎn)G處,連接CG,請(qǐng)?jiān)趫D3位置畫出圖形,并求出sin∠CGF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,按以下步驟作圖:①分別以B,C為圓心,以大于BC的一半長(zhǎng)為半徑作弧,兩弧相交于兩點(diǎn)M,N;②作直線MN交AB于點(diǎn)D,連結(jié)CD,若AC=5,AB=11,則△ACD的周長(zhǎng)為( )
A.11
B.16
C.21
D.27
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某食品廠從生產(chǎn)的袋裝食品中抽出樣品20袋,檢測(cè)每袋的質(zhì)量是否符合標(biāo)準(zhǔn),超過(guò)或不足的部分分別用正、負(fù)數(shù)來(lái)表示,記錄如下表:
與標(biāo)準(zhǔn)質(zhì)量的差值 | 5 | 2 | 0 | 1 | 3 | 6 |
袋 數(shù) | 1 | 4 | 3 | 4 | 5 | 3 |
(1)這批樣品的平均質(zhì)量比標(biāo)準(zhǔn)質(zhì)量多還是少?多或少幾克?
(2)若每袋標(biāo)準(zhǔn)質(zhì)量為450克,則抽樣檢測(cè)的總質(zhì)量是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=x﹣4與x軸、y軸分別交于M、N兩點(diǎn),以坐標(biāo)原點(diǎn)O為圓心的⊙O半徑為2,將⊙O沿x軸向右平移,當(dāng)⊙O恰好與直線MN相切時(shí),平移的最小距離為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=100°,點(diǎn)D在BC邊上,△ABD和△AFD關(guān)于直線AD對(duì)稱,∠FAC的平分線交BC于點(diǎn)G,連接FG.
(1)求∠DFG的度數(shù);
(2)設(shè)∠BAD=θ,
①當(dāng)θ為何值時(shí),△DFG為等腰三角形;
②△DFG有可能是直角三角形嗎?若有,請(qǐng)求出相應(yīng)的θ值;若沒(méi)有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com