求證:無論x為何值,代數(shù)式x2-4x+5的值恒大于0.

答案:
解析:

  證明:x2-4x+5=(x2-4x+4)+1=(x-2)2+1,

  因為(x-2)2≥0,所以(x-2)2+1>0.

  所以無論x為何值,代數(shù)式x2-4x+5的值恒大于0.

  點(diǎn)評:當(dāng)一個二次三項式配成(x+m)2+n的形式后,若n為正數(shù),則此二次三項式的值恒為正數(shù).


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的一元二次方程mx2-3(m-1)x+2m-3=0(m為實數(shù))
(1)若方程有兩個不相等的實數(shù)根,求m的取值范圍;
(2)求證:無論m為何值,方程總有一個固定的根;
(3)若m為整數(shù),且方程的兩個根均為正整數(shù),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2-(m2+5)x+2m2+6.
(1)求證:無論m為何值,拋物線與x軸必有兩個交點(diǎn),并且有一個交點(diǎn)必為A(2,0);
(2)設(shè)拋物線與x軸的另一個交點(diǎn)為B,記AB的長為d,求d與m之間的函數(shù)關(guān)系式;
(3)令d=10,問拋物線上是否存在點(diǎn)P,使△ABP為直角三角形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的方程x2-kx-2=0.
(1)求證:無論k為何值時,方程有兩個不相等的實數(shù)根.
(2)設(shè)方程的兩個實數(shù)根為x1,x2,若2(x1+x2)>x1x2,求k的取值范圍.
(3)設(shè)方程的兩個實數(shù)根為x1,x2,且滿足
1
x1
+
1
x2
=-
2
3
,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC的兩邊AB、AC的長是關(guān)于x的一元二次方程x2-(2k+3)x+k2+3k+2=0有兩個實數(shù)根,第三邊BC的長為5.
(1)求證:無論k為何值,關(guān)于x的一元二次方程x2-(2k+3)x+k2+3k+2=0都有兩個不相等的實數(shù)根;
(2)當(dāng)k為何值時,△ABC是直角三角形;
(3)當(dāng)k為何值時,△ABC是等腰三角形,并求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

求證:無論k為何值,方程x2+kx-k=
32
總有兩個不相等的實數(shù)根.

查看答案和解析>>

同步練習(xí)冊答案