【題目】如圖,拋物線y=ax2+bx+4與x軸交于A(﹣2,0)、B(4、0)兩點(diǎn),與y軸交于C點(diǎn).
(1)求拋物線的解析式;
(2)T是拋物線對(duì)稱軸上的一點(diǎn),且△ATC是以AC為底的等腰三角形,求點(diǎn)T的坐標(biāo);
(3)M、Q兩點(diǎn)分別從A、B點(diǎn)以每秒1個(gè)單位長度的速度沿x軸同時(shí)出發(fā)相向而行,當(dāng)點(diǎn)M到原點(diǎn)時(shí),點(diǎn)Q立刻掉頭并以每秒 個(gè)單位長度的速度向點(diǎn)B方向移動(dòng),當(dāng)點(diǎn)M到達(dá)拋物線的對(duì)稱軸時(shí),兩點(diǎn)停止運(yùn)動(dòng),過點(diǎn)M的直線l⊥x軸交AC或BC于點(diǎn)P.求點(diǎn)M的運(yùn)動(dòng)時(shí)間t與△APQ面積S的函數(shù)關(guān)系式,并求出S的最大值.
【答案】
(1)解:把A(﹣2,0),B(4,0)代入y=ax2+bx+4得:
,
解得:a=﹣ ,b=1,
∴拋物線的解析式是:y=﹣ x2+x+4,
答:拋物線的解析式是y=﹣ x2+x+4
(2)解:由y=﹣ x2+x+4=﹣ (x﹣1)2+ ,得拋物線的對(duì)稱軸為直線x=1,
直線x=1交x軸于點(diǎn)D,設(shè)直線x=1上一點(diǎn)T(1,h),
連接TC、TA,作CE⊥直線x=1,垂足是E,
由C(0,4)得點(diǎn)E(1,4),
在Rt△ADT和Rt△TEC中,由TA=TC得32+h2=12+(4﹣h)2,
∴h=1,
∴T的坐標(biāo)是(1,1),
答:點(diǎn)T的坐標(biāo)是(1,1)
(3)解:(I)當(dāng)0<t≤2時(shí),△AMP∽△AOC,
∴ = ,PM=2t,
AQ=6﹣t,
∴S= PMAQ= ×2t(6﹣t)=﹣t2+6t=﹣(t﹣3)2+9,
當(dāng)t=2時(shí)S的最大值為8;
(II)當(dāng)2<t≤3時(shí),
作PM⊥x軸于M,作PF⊥y軸于點(diǎn)F,
則△COB∽△CFP,
又∵CO=OB,
∴FP=FC=t﹣2,PM=4﹣(t﹣2)=6﹣t,AQ=4+ (t﹣2)= t+1,
∴S= PMAQ= (6﹣t)( t+1)=﹣ t2+4t+3=﹣ (t﹣ )2+ ,
當(dāng)t= 時(shí),S最大值為 ,
綜合(I)(II)S的最大值為 ,
答:點(diǎn)M的運(yùn)動(dòng)時(shí)間t與△APQ面積S的函數(shù)關(guān)系式是S=﹣t2+6t(0<t≤2),S=﹣ t2+4t+3(2<t≤3),S的最大值是 .
【解析】(1)把A、B的坐標(biāo)代入拋物線的解析式得到方程組,求出方程組的解即可;(2)設(shè)直線x=1上一點(diǎn)T(1,h),連接TC、TA,作CE⊥直線x=1,垂足是E,根據(jù)TA=TC由勾股定理求出即可;(3)(I)當(dāng)0<t≤2時(shí),△AMP∽△AOC,推出比例式,求出PM,AQ,根據(jù)三角形的面積公式求出即可;(II)當(dāng)2<t≤3時(shí),作PM⊥x軸于M,PF⊥y軸于點(diǎn)F,表示出三角形APQ的面積,利用配方法求出最值即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB⊥BC,DC⊥BC,垂足分別為B、C,設(shè)AB=4,DC=1,BC=4.
(1)求線段AD的長.
(2)在線段BC上是否存在點(diǎn)P,使△APD是等腰三角形?若存在,求出線段BP的長;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察如圖所示的長方體.
(1)用符號(hào)表示下列兩棱的位置關(guān)系:AB___A′B′,AA′_____AB,D′A′_____D′C′,AD______BC.
(2) A′B′與BC所在的直線是兩條不相交的直線,它們_____平行線.(填“是”或“不是”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校準(zhǔn)備組織七年級(jí)學(xué)生參加夏令營,已知:用3輛小客車和1輛大客車每次可運(yùn)送學(xué)生105人;用一輛小客車和2輛大客車每次可運(yùn)送學(xué)生110人,現(xiàn)有學(xué)生400人,計(jì)劃租用小客車a輛,大客車b輛,一次送完,且恰好每輛車都坐滿.
(1)1輛小客車和1輛大客車都坐滿后一次可送多少名學(xué)生?
(2)請(qǐng)你幫學(xué)校設(shè)計(jì)出所有的租車方案;
(3)若小客車每輛需租金200元,大客車每輛需租金380元,請(qǐng)選出最省錢的方案,并求出最省租金.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,和都是邊長為1的等邊三角形.
四邊形ABCD是菱形嗎?為什么?
如圖2,將沿射線BD方向平移到的位置,則四邊形是平行四邊形嗎?為什么?
在移動(dòng)過程中,四邊形有可能是矩形嗎?如果是,請(qǐng)求出點(diǎn)B移動(dòng)的距離寫出過程;如果不是,請(qǐng)說明理由圖3供操作時(shí)使用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=12,點(diǎn)E在邊CD上,且CD=3DE,將△ADE沿AE對(duì)折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG、CF,下列結(jié)論: ①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=28.8. 其中正確結(jié)論的個(gè)數(shù)是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為建設(shè)資源節(jié)約型、環(huán)境友好型社會(huì),克服因干旱而造成的電力緊張困難,切實(shí)做好節(jié)能減排工作.某地決定對(duì)居民家庭用電實(shí)行“階梯電價(jià)”,電力公司規(guī)定:居民家庭每月用電量在80千瓦時(shí)以下(含80千瓦時(shí),1千瓦時(shí)俗稱1度)時(shí),實(shí)行“基本電價(jià)”;當(dāng)居民家庭月用電量超過80千瓦時(shí)時(shí),超過部分實(shí)行“提高電價(jià)”.
(1)小張家今年2月份用電100千瓦時(shí),上繳電費(fèi)68元;5月份用電120千瓦時(shí),上繳電費(fèi)88元.求“基本電價(jià)”和“提高電價(jià)”分別為多少元/千瓦時(shí);
(2)若6月份小張家預(yù)計(jì)用電130千瓦時(shí),請(qǐng)預(yù)算小張家6月份應(yīng)上繳的電費(fèi).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E,F(xiàn)為平行四邊形ABCD的對(duì)角線BD上的兩點(diǎn),AE⊥BD于點(diǎn)E,CF⊥BD于點(diǎn)F. 求證:AE=CF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com