如圖,兩個邊長相等的正方形ABCD和OEFG,若將正方形OEFG繞點O按逆時針方向旋轉(zhuǎn)150°,則兩個正方形的重疊部分四邊形OMCN的面積( 。
A.不變B.先增大再減小
C.先減小再增大D.不斷增大

∵四邊形ABCD、四邊形PEFG是兩個邊長相等正方形,
∴∠BOC=∠EOG=90°,∠OBC=∠OCD=45°,OB=OC,
∴∠BOC-∠COM=∠EOG-∠COM,
即∠BOM=∠CON,
∵在△BOM和△CON中
∠BOM=∠CON
OB=OC
∠OBM=∠OCN
,
∴△BOM≌△CON,
∴兩個正方形的重疊部分四邊形OMCN的面積是S△COM+S△CNO=S△COM+S△BOM=S△BOC=
1
4
S正方形ABCD,
即不管怎樣移動,陰影部分的面積都等于
1
4
S正方形ABCD,
故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD是正方形,點E、F分別是AB和AD延長線上的點,BE=DF.
(1)求證:△CEF是等腰直角三角形;
(2)若S△CEF=
17
2
,①當(dāng)AF=5DF時,求正方形ABCD的邊長;②通過探究,直接寫出當(dāng)AB=kDF(k>1)時,正方形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在四邊形ABCD中,對角線AC,BD交于點O,點P是在線段BC上任意一點(與點B不重合),∠BPE=
1
2
∠BCA,PE交BO于點E,過點B作BF⊥PE,垂足為F,交AC于點G.
(1)若ABCD為正方形,
①如圖(1),當(dāng)點P與點C重合時.△BOG是否可由△POE通過某種圖形變換得到?證明你的結(jié)論;
②結(jié)合圖(2)求
BF
PE
的值;
(2)如圖(3),若ABCD為菱形,記∠BCA=α,請?zhí)骄坎⒅苯訉懗?span mathtag="math" >
BF
PE
的值.(用含α的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖甲,在△ABC中,∠ACB為銳角,點D為射線BC上一動點,連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.解答下列問題:
(1)如果AB=AC,∠BAC=90°,
①當(dāng)點D在線段BC上時(與點B不重合),如圖乙,線段CF、BD之間的位置關(guān)系為______,數(shù)量關(guān)系為______.
②當(dāng)點D在線段BC的延長線上時,如圖丙,①中的結(jié)論是否仍然成立,為什么?
(2)如果AB≠AC,∠BAC≠90°點D在線段BC上運動.試探究:當(dāng)△ABC滿足一個什么條件時,CF⊥BC(點C、F重合除外)?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在矩形ABCD中,AF、BE、CE、DF分別是矩形的四個角的角平分線,E、M、F、N是其交點,求證:四邊形EMFN是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在正方形ABCD中,點E、F分別在CD、BC上,且BF=CE,連接BE、AF相交于點G,則下列結(jié)論不正確的是( 。
A.BE=AFB.∠DAF=∠BEC
C.∠AFB+∠BEC=90°D.AG⊥BE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在等腰Rt△ABC中,∠C=90°,AC=8,F(xiàn)是AB邊上的中點,點D,E分別在AC,BC邊上運動,且保持AD=CE.連接DE,DF,EF.在此運動變化的過程中,下列結(jié)論:
①△DFE是等腰直角三角形;
②四邊形CDFE不可能為正方形,
③DE長度的最小值為4;
④四邊形CDFE的面積保持不變;
⑤△CDE面積的最大值為8.
其中正確的結(jié)論是( 。
A.①②③B.①④⑤C.①③④D.③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

ABCD是邊長為1的正方形,△BPC是等邊三角形,則△BPD的面積為(  )
A.
1
4
B.
3
-1
4
C.
1
8
D.
2
3
-1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,ABCD為正方形,E、F分別在BC、CD上,且△AEF為正三角形,四邊形A′B′C′D′為△AEF的內(nèi)接正方形,△A′E′F′為正方形A′B′C′D′的內(nèi)接正三角形.
(1)試猜想
SA′B′C′D′
SABCD
S△A′E′F′
S△AEF
的大小關(guān)系,并證明你的結(jié)論;
(2)求
SA′B′C′D′
SABCD
的值.

查看答案和解析>>

同步練習(xí)冊答案