如圖,AD是⊙O的弦,AB經(jīng)過圓心O,交⊙O于點C,直線BD與⊙O相切,∠DAB=30°.
(1)求∠B的度數(shù);
(2)連接CD,若CD=5,求AB的長.
分析:(1)連接OD,由切線的性質(zhì)和三角形的外角和定理即可求出∠B的度數(shù);
(2)連接CD,證明△OCD是邊長為5的等邊三角形,得到圓的半徑的長,然后求出AB的長.
解答:解:(1)連接OD,
∵直線BD與⊙O相切,
∴∠ODB=90°,
∵OD=OA,
∴∠DAB=∠ADB=30°,
∴∠DOB=60°,
∴∠B=90°-60°=30°;
(2)連接CD,
∠COD=∠OAD+∠ODA=30°+30°=60°,
又OC=OD
∴△OCD是等邊三角形,
即:OC=OD=CD=5=OA,
∵∠ODB=90°,∠B=30°,
∴OB=10,
∴AB=AO+OB=5+10=15.
點評:本題考查的是切線的性質(zhì)和三角形的外角和定理,解題的關(guān)鍵是利用三角形的邊角關(guān)系求出線段AB的長.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,AD是⊙O的弦,OB⊥AD于點E,交⊙O于點C,OE=1,BE=8,AE:AB=1:3.精英家教網(wǎng)
(1)求證:AB是⊙O的切線;
(2)點F是弧ACD上的一點,當(dāng)∠AOF=2∠B時,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、如圖,AD是⊙O的弦,AB經(jīng)過圓心O,交⊙O于點C.∠DAB=∠B=30°.
(1)直線BD是否與⊙O相切?為什么?
(2)連接CD,若CD=5,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AD是⊙O的弦,AB經(jīng)過圓心O,交⊙O于點C,∠DAB=∠B=30°.
(1)求證:直線BD與⊙O相切;
(2)若AC=10,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分8分)如圖,AD是⊙O的弦,AB經(jīng)過圓心O,交⊙O于點C.∠DAB=∠B=30°.

1.(1)直線BD是否與⊙O相切?為什么?

2.(2)連接CD,若CD=5,求AB的長.

 

 

查看答案和解析>>

同步練習(xí)冊答案