【題目】某工廠生產(chǎn)一種合金薄板(其厚度忽略不計(jì)),這些薄板的形狀均為正方形,邊長(zhǎng)(單位:cm)在5~50之間,每張薄板的成本價(jià)y1(單位:元)與它的邊長(zhǎng)x(單位:cm)滿足關(guān)系式y1=,每張薄板的出廠價(jià)y2(單位:元)由基礎(chǔ)價(jià)和浮動(dòng)價(jià)兩部分組成,其中基礎(chǔ)價(jià)與薄板的大小無關(guān),是固定不變的,浮動(dòng)價(jià)與薄板的邊長(zhǎng)x成正比例,在營(yíng)銷過程中得到了表格中的數(shù)據(jù).
薄板的邊長(zhǎng)(cm) | 20 | 30 |
出廠價(jià)(元/張) | 50 | 70 |
(1)求一張薄板的出廠價(jià)y2與邊長(zhǎng)x之間滿足的函數(shù)關(guān)系式;
(2)已知:利潤(rùn)=出廠價(jià)﹣成本價(jià)
①求一張薄板的利潤(rùn)y與邊長(zhǎng)x之間滿足的函數(shù)關(guān)系式;
②當(dāng)邊長(zhǎng)為多少時(shí),出廠一張薄板獲得的利潤(rùn)最大?最大利潤(rùn)是多少?
【答案】(1)y2=2x+10;(2)①一張薄板的利潤(rùn)y與邊長(zhǎng)x之間滿足的函數(shù)關(guān)系式為y=﹣+2x+10;②當(dāng)邊長(zhǎng)為25cm時(shí),出廠一張薄板利潤(rùn)最大,最大利潤(rùn)為35元.
【解析】
(1)利用待定系數(shù)法求一次函數(shù)解析式即可;
(2)①y=y2-y1,將y2和y1的表達(dá)式代入,即可求出利潤(rùn)y與邊長(zhǎng)x之間滿足的函數(shù)關(guān)系式;②將①中的二次函數(shù)的一般式改寫成頂點(diǎn)式,根據(jù)二次函數(shù)的性質(zhì)可得答案.
(1)根據(jù)題意,出廠價(jià)y2與邊長(zhǎng)x之間滿足一次函數(shù)關(guān)系式,設(shè)y2=kx+b
由表中數(shù)據(jù)可得:
解得:
∴y2=2x+10;
(2)①由題意得,y=y2﹣y1
=(2x+10)﹣
=﹣+2x+10
∴一張薄板的利潤(rùn)y與邊長(zhǎng)x之間滿足的函數(shù)關(guān)系式為y=﹣+2x+10;
②y=﹣+2x+10
=
∵
∴當(dāng)x=25時(shí),y最大值=35
又∵x=25時(shí),滿足5<x<50
∴當(dāng)邊長(zhǎng)為25cm時(shí),出廠一張薄板利潤(rùn)最大,最大利潤(rùn)為35元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長(zhǎng)為1個(gè)單位長(zhǎng)度,△ABC 的三個(gè)頂點(diǎn)的坐標(biāo)分別 A(-3,4)B(-5,2)C(-2,1)
(1)畫出 △ABC關(guān)于y 軸的對(duì)稱圖形 △A1B1C1;
(2)畫出將△ABC 繞原點(diǎn) O逆時(shí)針方向旋轉(zhuǎn)90°得到的△A2B2C2 ;
(3)求(2)中線段 OA掃過的圖形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):如圖1,在等邊中,點(diǎn)為邊上一動(dòng)點(diǎn),交于點(diǎn),將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,連接.則與的數(shù)量關(guān)系是_____,的度數(shù)為______.
(2)拓展探究:如圖2,在中,,,點(diǎn)為邊上一動(dòng)點(diǎn),交于點(diǎn),當(dāng)∠ADF=∠ACF=90°時(shí),求的值.
(3)解決問題:如圖3,在中,,點(diǎn)為的延長(zhǎng)線上一點(diǎn),過點(diǎn)作交的延長(zhǎng)線于點(diǎn),直接寫出當(dāng)時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)(,,為常數(shù)且)中的與的部分對(duì)應(yīng)值如下表:
-1 | 0 | 1 | 3 | |
-1 | 3 | 5 | 3 |
給出了結(jié)論:
(1)二次函數(shù)有最大值,最大值為5;(2);(3)時(shí),的值隨值的增大而減小;(4)3是方程的一個(gè)根;(5)當(dāng)時(shí),.則其中正確結(jié)論的個(gè)數(shù)是( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為二次函數(shù)y=ax2+bx+c的圖象,在下列說法中:①ac<0;②方程ax2+bx+c=0的根是x1,x2,則x1+x2<0;③a+b+c>0;④當(dāng)x>1時(shí),y隨x的增大而增大.正確的說法有_____.(把正確的答案的序號(hào)都填在橫線上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩相似三角形對(duì)應(yīng)高的比為,且大三角形的面積為,求小三角形的面積,又這兩三角形的周長(zhǎng)差為,則它們的周長(zhǎng)分別為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC于點(diǎn)D,過點(diǎn)D作DF⊥AC于點(diǎn)F,交BA的延長(zhǎng)線于點(diǎn)E.求證:
(1)BD=CD;
(2)DE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品現(xiàn)在的售價(jià)為每件60元,每星期可賣出300件,市場(chǎng)調(diào)查反映:如調(diào)整價(jià)格,每漲價(jià)1元,每星期要少賣出10件;每降價(jià)1元,每星期可多賣出20件,已知商品的進(jìn)價(jià)為每件40元
(1)設(shè)每件漲價(jià)x元,則每星期實(shí)際可賣出 件,每星期售出商品的利潤(rùn)y為 元.x的取值范圍是 ;
(2)設(shè)每件降價(jià)m元,則每星期售出商品的利潤(rùn)w為 元;
(3)在漲價(jià)的情況下,如何定價(jià)才能使每星期售出商品的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司從2014年開始投入技術(shù)改進(jìn)資金,經(jīng)技術(shù)改進(jìn)后,其產(chǎn)品的成本不斷降低,具體數(shù)據(jù)如下表:
年 度 | 2013 | 2014 | 2015 | 2016 |
投入技改資金(萬元) | 2.5 | 3 | 4 | 4.5 |
產(chǎn)品成本(萬元/件) | 7.2 | 6 | 4.5 | 4 |
(1)請(qǐng)你認(rèn)真分析表中數(shù)據(jù),從一次函數(shù)和反比例函數(shù)中確定哪一個(gè)函數(shù)能表示其變化規(guī)律,給出理由,并求出其解析式;
(2)按照這種變化規(guī)律,若2017年已投入資金5萬元.
①預(yù)計(jì)生產(chǎn)成本每件比2016年降低多少萬元?
②若打算在2017年把每件產(chǎn)品成本降低到3.2萬元,則還需要投入技改資金多少萬元?(結(jié)果精確到0.01萬元).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com