【題目】求下列各式中x的值.

(1) (x-1)3=27;

(2)x3+1=-;

(3)(2x+3)3=54;

(4) 27(2x-1)3+2=66.

【答案】(1) x=4;(2) x=-;(3) x=(4) x=

【解析】

1利用立方根的定義直接開立方即可;

2)移項,合并同類項后,開立方即可

3)方程兩邊同時乘以4,開立方即可

4)方程移項、合并同類項,兩邊同除以27,開立方即可

(1)(x1)3=27,∴x1=3,∴x=4

(2)x3+1=,∴x3=,∴x=

(3)(2x+3)3=54,∴(2x+3)3=216,∴2x+3=6,解得:x=

(4)27(2x1)3+2=66,∴27(2x1)3=64,∴(2x1)3=,∴2x1=,解得:x=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,分別延長△ABC的邊AB、ACD、E,∠CBD與∠BCE的平分線相交于點(diǎn)P,愛動腦筋的小明在寫作業(yè)的時發(fā)現(xiàn)如下規(guī)律:

(1)若∠A=60°,則∠P=   °;

(2)若∠A=40°,則∠P=   °;

(3)若∠A=100°,則∠P=   °;

(4)請你用數(shù)學(xué)表達(dá)式歸納∠A與∠P的關(guān)系   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某住宅小區(qū)在施工過程中留下了一塊空地(圖中的四邊形ABCD),經(jīng)測量,在四邊形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=90°.

(1)△ACD是直角三角形嗎?為什么?

(2)小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米100元,試問鋪滿這塊空地共需花費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2﹣2x+3的圖象與x軸交A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).

(1)求點(diǎn)A、B、C的坐標(biāo);
(2)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過P作PQ∥AB交拋物線于點(diǎn)Q,過Q作QN⊥x軸于N,當(dāng)矩形PMNQ的周長最大時,求△AEM的面積;
(3)在(2)的條件下,當(dāng)矩形PMNQ的周長最大時,連接DQ,過拋物線上一點(diǎn)F作y軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方),若FG=2 DQ,求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一列快車從甲地勻速駛往乙地,一列慢車從乙地勻速駛往甲地.設(shè)先發(fā)車輛行駛的時間為xh,兩車之間的距離為ykm,圖中的折線表示yx之間的函數(shù)關(guān)系,根據(jù)圖象解決以下問題:

(1)慢車的速度為_____km/h,快車的速度為_____km/h;

(2)解釋圖中點(diǎn)C的實際意義并求出點(diǎn)C的坐標(biāo);

(3)求當(dāng)x為多少時,兩車之間的距離為500km.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,點(diǎn)D在邊AB上AC=BC=BD,AD=CD,A的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市為了進(jìn)一步落實國務(wù)院“家電下鄉(xiāng)”政策,家電下鄉(xiāng)的產(chǎn)品為彩電、冰箱、洗衣機(jī)和手機(jī)四種產(chǎn)品,我市一家家電商場,今年一季度對以上四種產(chǎn)品的銷售情況進(jìn)行了統(tǒng)計,繪制了如下的統(tǒng)計圖,請你根據(jù)圖中信息解答下列問題:
(1)該商場一季度四種產(chǎn)品共銷售臺;
(2)該商場一季度洗衣機(jī)銷售的數(shù)量占四種產(chǎn)品銷售總量的%;
(3)補(bǔ)全條形統(tǒng)計圖和扇形統(tǒng)計圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在扇形AOB中,∠AOB=90°, = ,點(diǎn)D在OB上,點(diǎn)E在OB的延長線上,當(dāng)正方形CDEF的邊長為2 時,則陰影部分的面積為(
A.2π﹣4
B.4π﹣8
C.2π﹣8
D.4π﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在三角形ABC中,點(diǎn)D在BC上,DE⊥AB于E,點(diǎn)F在AB上,在CF的延長線上取一點(diǎn)G,連接AG.

(1)如圖1,若∠GAB=∠B,∠GAC+∠EDB=180°,求證:AB⊥AC.

(2)如圖2.在(1)的條件下,∠GAC的平分線交CG于點(diǎn)M,∠ACB的平分線交AB于點(diǎn)N,當(dāng)∠AMC-∠ANC=35°時,求∠AGC的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案