【題目】已知2x+3y﹣3=0,求9x27y的值.

【答案】解:∵2x+3y﹣3=0,
∴2x+3y=3,
則9x27y=32x33y=32x+3y=33=27.
故答案為:27.
【解析】先把9x和27y都化為3為底數(shù)的形式,然后求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形ABCD中,∠B70°,則∠A_____,∠D_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】清朝康熙皇帝是我國歷史上對數(shù)學(xué)很有興趣的帝王近日,西安發(fā)現(xiàn)了他的數(shù)學(xué)專著,其中有一文《積求勾股法》,它對“三邊長為3、4、5的整數(shù)倍的直角三角形,已知面積求邊長”這一問提出了解法:“若所設(shè)者為積數(shù)(面積),以積率六除之,平方開之得數(shù),再以勾股弦各率乘之,即得勾股弦之?dāng)?shù)”.用現(xiàn)在的數(shù)學(xué)語言表述是:“若直角三角形的三邊長分別為3、4、5的整數(shù)倍,設(shè)其面積為S,則第一步: m;第二步: k;第三步:分別用3、45乘以k,得三邊長”.

1)當(dāng)面積S等于150時,請用康熙的“積求勾股法”求出這個直角三角形的三邊長;

2)你能證明積求勾股法的正確性嗎?請寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016重慶市第26題)如圖1,二次函數(shù)的圖象與一次函數(shù)y=kx+b(k0)的圖象交于A,B兩點,點A的坐標為(0,1),點B在第一象限內(nèi),點C是二次函數(shù)圖象的頂點,點M是一次函數(shù)y=kx+b(k0)的圖象與x軸的交點,過點B作x軸的垂線,垂足為N,且SAMO:S四邊形AONB=1:48.

(1)求直線AB和直線BC的解析式;

(2)點P是線段AB上一點,點D是線段BC上一點,PD//x軸,射線PD與拋物線交于點G,過點P作PEx軸于點E,PFBC于點F,當(dāng)PF與PE的乘積最大時,在線段AB上找一點H(不與點A,點B重合),使GH+BH的值最小,求點H的坐標和GH+BH的最小值;

(3)如圖2,直線AB上有一點K(3,4),將二次函數(shù)沿直線BC平移,平移的距離是t(t0),平移后拋物線使點A,點C的對應(yīng)點分別為點A,點C;當(dāng)ACK是直角三角形時,求t的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形的對角,鄰角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果ab都是實數(shù),那么a+bb+a,這個事件是_____事件,(填隨機、不可能必然).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售A,B兩種品牌的教學(xué)設(shè)備,這兩種教學(xué)設(shè)備的進價和售價如下表所示:

A

B

進價(萬元/套)

1.5

1.2

售價(萬元/套)

1.65

1.4

該商場計劃購進兩種教學(xué)設(shè)備若干套,共需66萬元,全部銷售后可獲毛利潤9萬元。

(毛利潤=(售價 - 進價)×銷售量)

(1)該商場計劃購進A,B兩種品牌的教學(xué)設(shè)備各多少套?

(2)通過市場調(diào)研,該商場決定在原計劃的基礎(chǔ)上,減少A種設(shè)備的購進數(shù)量,增加B種設(shè)備的購進數(shù)量,已知B種設(shè)備增加的數(shù)量是A種設(shè)備減少數(shù)量的1.5倍。若用于購進這兩種教學(xué)設(shè)備的總資金不超過69萬元,問A種設(shè)備購進數(shù)量至多減少多少套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)分式的基本性質(zhì),把幾個異分母的分式分別化成與原來的分式的同分母的分式,叫做分式的通分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABCABC是位似圖形.ABC的面積為6 cm2ABC的周長是ABC的周長一半.則ABC的面積等于(  )

A. 24 cm2 B. 12 cm2 C. 6 cm2 D. 3 cm2

查看答案和解析>>

同步練習(xí)冊答案