【題目】如圖,點(diǎn)在線段上,在的同側(cè)作角的直角三角形和角的直角三角形,與,分別交于點(diǎn),,連接.對(duì)于下列結(jié)論:
①;②;③圖中有5對(duì)相似三角形;④.其中結(jié)論正確的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.4個(gè)D.3個(gè)
【答案】D
【解析】
如圖,設(shè)AC與PB的交點(diǎn)為N,根據(jù)直角三角形的性質(zhì)得到,根據(jù)相似三角形的判定定理得到△BAE∽△CAD,故①正確;根據(jù)相似三角形的性質(zhì)得到∠BEA=∠CDA,推出△PME∽△AMD,根據(jù)相似三角形的性質(zhì)得到MPMD=MAME,故②正確;由相似三角形的性質(zhì)得到∠APM=∠DEM=90,根據(jù)垂直的定義得到AP⊥CD,故④正確;同理:△APN∽△BCN,△PNC∽△ANB,于是得到圖中相似三角形有6對(duì),故③不正確.
如圖,設(shè)AC與PB的交點(diǎn)為N,
∵∠ABC=∠AED=90,∠BAC=∠DAE=30,
∴,∠BAE=30+∠CAE,∠CAD=30+∠CAE,
∴∠BAE=∠CAD,
∴△BAE∽△CAD,故①正確;
∵△BAE∽△CAD,
∴∠BEA=∠CDA,
∵∠PME=∠AMD,
∴△PME∽△AMD,
∴,
∴MPMD=MAME,故②正確;
∴,
∵∠PMA=∠EMD,
∴△APM∽△DEM,
∴∠APM=∠DEM=90,
∴AP⊥CD,故④正確;
同理:△APN∽△BCN,△PNC∽△ANB,
∵△ABC∽△AED,
∴圖中相似三角形有6對(duì),故③不正確;
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)為圖形上任意一點(diǎn),過(guò)點(diǎn)作直線垂足為,記的長(zhǎng)度為.
定義一:若存在最大值,則稱其為“圖形到直線的限距離”,記作;
定義二:若存在最小值,則稱其為“圖形到直線的基距離”,記作;
(1)已知直線,平面內(nèi)反比例函數(shù)在第一象限內(nèi)的圖象記作則 .
(2)已知直線,點(diǎn),點(diǎn)是軸上一個(gè)動(dòng)點(diǎn),的半徑為,點(diǎn)在上,若求此時(shí)的取值范圍,
(3)已知直線恒過(guò)定點(diǎn),點(diǎn)恒在直線上,點(diǎn)是平面上一動(dòng)點(diǎn),記以點(diǎn)為頂點(diǎn),原點(diǎn)為對(duì)角線交點(diǎn)的正方形為圖形,若請(qǐng)直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:二次函數(shù)
(1)通過(guò)配方將它寫成的形式.
(2)當(dāng) 時(shí),函數(shù)有最 值,是 .
(3)當(dāng) 時(shí),隨的增大而增大;)當(dāng) 時(shí),隨的增大而減小.
(4)該函數(shù)圖象由的圖象經(jīng)過(guò)怎樣的平移得到?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一段拋物線:y=x(x﹣2)(0≤x≤2),記為C1,它與x軸交于點(diǎn)O,A1;將C1繞點(diǎn)A1旋轉(zhuǎn)180°得C2,交x軸于點(diǎn)A2;將C2繞點(diǎn)A2旋轉(zhuǎn)180°得C3,交x軸于點(diǎn)A3;…,如此進(jìn)行下去,得到圖形.
(1)請(qǐng)寫出拋物線C2的解析式:_____.
(2)若點(diǎn)P(4037.5,a)在圖形G上,則a=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中, , °,點(diǎn)D是線段BC上的動(dòng)點(diǎn),將線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)50°至,連接.已知AB2cm,設(shè)BD為x cm,B為y cm.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究,下面是小明的探究過(guò)程,請(qǐng)補(bǔ)充完整.(說(shuō)明:解答中所填數(shù)值均保留一位小數(shù))
(1)通過(guò)取點(diǎn)、畫圖、測(cè)量,得到了與的幾組值,如下表:
0.5 | 0.7 | 1.0 | 1.5 | 2.0 | 2.3 | ||
1.7 | 1.3 | 1.1 | 0.7 | 0.9 | 1.1 |
(2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象.
(3)結(jié)合畫出的函數(shù)圖象,解決問(wèn)題:
線段的長(zhǎng)度的最小值約為__________ ;
若 ,則的長(zhǎng)度x的取值范圍是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了傳承中華優(yōu)秀傳統(tǒng)文化,培養(yǎng)學(xué)生自主、團(tuán)結(jié)協(xié)作能力,某校推出了以下四個(gè)項(xiàng)目供學(xué)生選擇:.家鄉(xiāng)導(dǎo)游;.藝術(shù)暢游;.體育世界;.博物旅行.學(xué)校規(guī)定:每個(gè)學(xué)生都必須報(bào)名且只能選擇其中一個(gè)項(xiàng)目.學(xué)校對(duì)某班學(xué)生選擇的項(xiàng)目情況進(jìn)行了統(tǒng)計(jì),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)結(jié)合統(tǒng)計(jì)圖中的信息,解答下列問(wèn)題:
(1)該班學(xué)生總?cè)藬?shù)是______人;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整,并求項(xiàng)目所在扇形的圓心角的度數(shù);
(3)老師發(fā)現(xiàn)報(bào)名參加“博物旅行”的學(xué)生中恰好有兩名男生,現(xiàn)準(zhǔn)備從這些參加“博物旅行”的學(xué)生中任意挑選兩名擔(dān)任活動(dòng)記錄員,請(qǐng)用列表或畫樹(shù)狀圖的方法,求恰好選中1名男生和1名女生擔(dān)任活動(dòng)記錄員的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】被歷代數(shù)學(xué)家尊為“算經(jīng)之首”的《九章算術(shù)》是中國(guó)古代算法的扛鼎之作!毒耪滤阈g(shù)》中記載:“今有五省、六燕,集稱之衡,雀俱重,燕俱輕,一雀一燕交而處,衡適平。并燕、雀重一斤。問(wèn)燕,雀一枚各重幾何?”譯文:“今有只雀、只燕,分別聚集而且用衡器稱之,聚在一起的雀重,燕輕.將一只雀、一只燕交換位置而放,重量相等.只雀、只燕重量為斤。問(wèn)雀、燕每只各重多少斤?”(每只雀的重量相同、每只燕的重量相同)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)P(x1,y1)和點(diǎn)Q(x2,y2)是關(guān)于x的函數(shù)y=mx2﹣(2m+1)x+m+1(m為實(shí)數(shù))圖象上兩個(gè)不同的點(diǎn).對(duì)于下列說(shuō)法:①不論m為何實(shí)數(shù),關(guān)于x的方程mx2﹣(2m+1)x+m+1=0必有一個(gè)根為x=1;②當(dāng)m=0時(shí),(x1﹣x2)(y1﹣y2)<0成立;③當(dāng)x1+x2=0時(shí),若y1+y2=0,則m=﹣1;④當(dāng)m≠0時(shí),拋物線頂點(diǎn)在直線y=﹣x+1上.其中正確的是( 。
A.①②B.①②③C.③④D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,點(diǎn)E是AD的中點(diǎn),過(guò)點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于F,連接CF.
(1)求證:△AEF≌△DEB;
(2)若∠BAC=90°,求證:四邊形ADCF是菱形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com