【題目】如圖,在⊙O中,直徑AB2CA切⊙OA,BC交⊙OD,若∠C45°,則圖中陰影部分的面積為(

A.B.2C.πD.1

【答案】D

【解析】

連接OD,先由直徑AB2,CA切⊙OA得出OBOA2,∠BAC90°,由∠C45°得出△ABC是等腰直角三角形,根據(jù)圓周角定理得出∠AOD90°,根據(jù)S陰影SABCSOBDS扇形AOD+S扇形BODSOBD)進(jìn)而可得出結(jié)論.

解:連接OD

直徑AB2,CA⊙OA,

∴OBOA2,∠BAC90°

∵∠C45°,

∴△ABC是等腰直角三角形,

∴∠B45°,

∴∠AOD90°,

∴S陰影SABCSOBDS扇形AOD+S扇形BODSOBD

SABC2SOBDS扇形AOD+S扇形BOD

SABC2SOBD

×2×2×1×1

21

1

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AB是半圓O的直徑,AC是弦,點(diǎn)P沿BA方向,從點(diǎn)B運(yùn)動到點(diǎn)A,速度為1cm/s,若AB=10cm,點(diǎn)OAC的距離為4cm.

(1)求弦AC的長;

(2)問經(jīng)過多長時(shí)間后,APC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解初一年級學(xué)生每學(xué)期參加綜合實(shí)踐活動的情況,某區(qū)教育行政部門隨機(jī)抽樣調(diào)查了部分初一學(xué)生一個(gè)學(xué)期參加綜合實(shí)踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了統(tǒng)計(jì)圖和圖,請根據(jù)圖中提供的信息,回答下列問題:

(I)本次隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為   ,圖中的m的值為   ;

(II)求本次抽樣調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);

(III)若該區(qū)初一年級共有學(xué)生2500人,請估計(jì)該區(qū)初一年級這個(gè)學(xué)期參加綜合實(shí)踐活動的天數(shù)大于4天的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=4,動點(diǎn)PA點(diǎn)出發(fā),按A→B→C的方向在ABBC上移動,記PA=x,點(diǎn)D到直線PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,D,EF分別是AB,BC,AC的中點(diǎn),連結(jié)DF,EF,BF

1)求證:四邊形BEFD是平行四邊形;

2)若∠AFB90°,AB4,求四邊形BEFD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,DAB中點(diǎn),AECD,CEAB.

(1)試判斷四邊形ADCE的形狀,并證明你的結(jié)論.

(2)連接BE,若∠BAC=30°,CE=1,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題探究)如圖1,直線,垂足為,交于點(diǎn),點(diǎn)到直線的距離為2,點(diǎn)的距離為1,,,則的最小值是______;(提示:將線段沿方向平移1個(gè)單位長度即可解決,如圖2所示.)

(關(guān)聯(lián)運(yùn)用)如圖3,在等腰和等腰中,,在直線上,,連接、,則的最小值是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】初一(1)班針對你最喜愛的課外活動項(xiàng)目對全班學(xué)生進(jìn)行調(diào)查(每名學(xué)生分別選一個(gè)活動項(xiàng)目),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計(jì)表,繪制成扇形統(tǒng)計(jì)圖.

根據(jù)以上信息解決下列問題:

(1) , ;

(2)扇形統(tǒng)計(jì)圖中機(jī)器人項(xiàng)目所對應(yīng)扇形的圓心角度數(shù)為 ;

(3)從選航模項(xiàng)目的名學(xué)生中隨機(jī)選取名學(xué)生參加學(xué)校航模興趣小組訓(xùn)練,請用列舉法(畫樹狀圖或列表)求所選取的名學(xué)生中恰好有名男生、名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,BC2AB,對角線相交與O點(diǎn),過C點(diǎn)作CEBDBDE點(diǎn),HBC中點(diǎn),連接AHBDG點(diǎn),交EC的延長線于F點(diǎn),下列4個(gè)結(jié)論:EHABABG=∠HEC;ABG≌△HECCFBD.正確的結(jié)論是( 。

A.①②④B.①④C.③④D.①③④

查看答案和解析>>

同步練習(xí)冊答案