【題目】二次函數(shù)yax2+bx+ca≠0)與一次函數(shù)yax+c在同一坐標(biāo)系中的圖象大致為(  。

A.B.C.D.

【答案】D

【解析】

先根據(jù)一次函數(shù)的圖象判斷ac的符號,再判斷二次函數(shù)圖象與實(shí)際是否相符,判斷正誤.

解:A、由一次函數(shù)y=ax+c的圖象可得:a0,此時二次函數(shù)y=ax2+bx+c的圖象應(yīng)該開口向上,錯誤;
B、由一次函數(shù)y=ax+c的圖象可得:a0c0,此時二次函數(shù)y=ax2+bx+c的圖象應(yīng)該開口向上,交于y軸的正半軸,錯誤;
C、由一次函數(shù)y=ax+c的圖象可得:a0c0,此時二次函數(shù)y=ax2+bx+c的圖象應(yīng)該開口向下,錯誤.
D、由一次函數(shù)y=ax+c的圖象可得:a0,c0,此時二次函數(shù)y=ax2+bx+c的圖象應(yīng)該開口向下,與一次函數(shù)的圖象交于同一點(diǎn),正確;
故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:拋物線C1yax2+bx+ca0)與x軸交于點(diǎn)(﹣10),(20).

1b、c分別用含a的式子表示為:b   ,c   ;

2)將拋物線C1向左平移個單位,得到拋物線C2.直線ykx+ak0)與C2交于A,B兩點(diǎn)(AB左側(cè)).P是拋物線C2上一點(diǎn),且在直線AB下方.作PEy軸交線段ABE,過A、B兩點(diǎn)分別作PE的垂線AM、BN,垂足分別為M,N

①當(dāng)P點(diǎn)在y軸上時,試說明:AMBN為定值.

②已知當(dāng)點(diǎn)Pa,n)時,恰有SABMSABN,求當(dāng)1a3時,k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一塊形狀如圖的五邊形余料,,,.要在這塊余料中截取一塊矩形材料,其中一邊在上,并使所截矩形的面積盡可能大.

1)若所截矩形材料的一條邊是,求矩形材料的面積;

2)能否截出比(1)中面積更大的矩形材料?如果能,求出這些矩形材料面積的最大值,如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,PAD的中點(diǎn),連BP,過ABP的垂線,垂足為F,交BDE,交CDG

1)若矩形ABCD是正方形,如圖1

求證:AGBP

的值為   

2)類比:如圖2,在矩形ABCD中,若2AB3AD,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線NA(1,3)B(4,8),O(00)三點(diǎn)

(1)求該拋物線和直線AB的解析式.

(2)平移拋物線N,求同時滿足以下兩個條件的平移后的拋物線解析式:①平移后拋物線的頂點(diǎn)在直線AB上;②設(shè)平移后拋物線與y軸交于點(diǎn)C,如果SABC3SABO.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題背景)先閱讀理解下面的例題,再按要求解答下列問題:

例題:解一元二次不等式x240

(問題解決)∵x24=(x+2)(x2

x240可化為(x+2)(x2)>0

由有理數(shù)的乘法法則兩數(shù)相乘,同號得正,得

解不等式組①,得x2,

解不等式組②,得x<﹣2

∴(x+2)(x2)>0的解集為x2x<﹣2,

即一元二次不等式 x240 的解集為x2x<﹣2

(問題應(yīng)用)(1)一元二次不等式 x2160 的解集為   

2)分式不等式0 的解集為   ;

3)(拓展應(yīng)用)解一元二次不等式 2x23x0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長是6,點(diǎn)E、F分別是邊AD、AB的點(diǎn),APBE于點(diǎn)P.

(1)如圖①,當(dāng)AE=2AF=BF時,若點(diǎn)T是射線PF上的一個動點(diǎn)(點(diǎn)T不與點(diǎn)P重合),當(dāng)△ABT是直角三角形時,求AT的長.

(2)如圖②,當(dāng)AE=AF時,連結(jié)CP,判斷CPPF的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCDCEFG,如圖放置,點(diǎn)B,C,E共線,點(diǎn)C,D,G共線,連接AF,取AF的中點(diǎn)H,連接GH.若BC=EF=2,CD=CE=1,則GH=(  )

A. 1 B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣2x+3x軸交于點(diǎn)C,與y軸交于點(diǎn)B,拋物線yax2+x+c經(jīng)過B、C兩點(diǎn).

(1)求拋物線的解析式;

(2)如圖,點(diǎn)E是直線BC上方拋物線上的一動點(diǎn),當(dāng)△BEC面積最大時,請求出點(diǎn)E的坐標(biāo)和△BEC面積的最大值?

(3)(2)的結(jié)論下,過點(diǎn)Ey軸的平行線交直線BC于點(diǎn)M,連接AM,點(diǎn)Q是拋物線對稱軸上的動點(diǎn),在拋物線上是否存在點(diǎn)P,使得以P、Q、A、M為頂點(diǎn)的四邊形是平行四邊形?如果存在,請直接寫出點(diǎn)P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案