【題目】一個質點在第一象限及x軸、y軸上運動在第一秒時,它從原點運動到,然后接著按圖中箭頭所示方向運動,且每秒移動一個單位長度,那么第2008秒時該質點所在位置的坐標是( )
A.B.C.D.
【答案】D
【解析】
通過觀察和歸納發(fā)現:所有偶數的平方均在x軸上,若此偶數橫坐標為k,便對應第k2個點,且從k2向上走k個點就轉向左邊;所有奇數的平方均在y軸上,若此奇數縱坐標為k,便對應第k2個點,且從k2向右走k個點就轉向下邊,計算可知2008=442+72,從而可求結果.
解:由觀察及歸納得到,運動到x軸的時刻從左到右依次為
0,3,4,15,16,35,36……
我們所關注的是所有偶數的平方均在x軸上,若此偶數橫坐標為k,
便對應第個點,且從向上走k個點就轉向左邊,
如向上走2便轉向左邊;運動到y軸的時刻依次為
0,1,8,9,24,25…
我們所關注的是所有奇數的平方均在y軸上,若此奇數縱坐標為k便對應第個點,
且從向右走k個點就轉向下邊,
如向右走5便轉向下邊因為,
所以先找到,這是第1936個點,
還有72個單位長度,向上走4再左轉,再走28到達第2008個點,
此時距y軸有(個)單位長度,
所以第2008秒時該質點所在位置的坐標是.
故選D.
科目:初中數學 來源: 題型:
【題目】聲音在空氣中傳播的速度和氣溫有如下關系:
氣溫(℃) | 0 | 5 | 10 | 15 | 20 |
聲速(m/s) | 331 | 334 | 337 | 340 | 343 |
(1)上表反應了___________________________之間的關系,其中_______________是自變量,_______________是_________________的函數
(2)根據表中數據的變化,你發(fā)現的規(guī)律是:氣溫每升高5℃,聲速______________,若用T表示氣溫,V表示聲速,請寫出聲速V與氣溫T之間的函數關系式V=________________
(3)根據你發(fā)現的規(guī)律,回答問題:在30℃發(fā)生閃電的夏夜,小明在看到閃電6秒后聽到雷聲,那么發(fā)生打雷的地方距離小明大約有多遠?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點 A,B,C,D 依次在同一條直線上,點 E,F 分別在直線 AD 的兩側,已知 BE//CF,∠A=∠D,AE=DF.
(1)求證:四邊形 BFCE 是平行四邊形.
(2)若 AD=10,EC=3,∠EBD=60°,當四邊形 BFCE是菱形時,求 AB 的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中華文明,源遠流長;中華漢字,寓意深廣,為了傳承優(yōu)秀傳統(tǒng)文化,某校團委組織了一次全校3000名學生參加的“漢字聽寫”大賽,賽后發(fā)現所有參賽學生的成績均不低于50分,為了更好地了解本次大賽的成績分布情況,隨機抽取了其中200名學生的成績(成績x取整數,總分100分)作為樣本進行整理,得到下列不完整的統(tǒng)計圖表:
成績x/分 | 頻數 | 頻率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | n |
80≤x<90 | m | 0.35 |
90≤x≤100 | 50 | 0.25 |
請根據所給信息,解答下列問題:
(1)m= ,n= ;
(2)請補全頻數分布直方圖;
(3)這次比賽成績的中位數會落在 分數段;
(4)若成績在90分以上(包括90分)的為“優(yōu)”等,則該校參加這次比賽的3000名學生中成績“優(yōu)”等約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,OD垂直于弦AC于點E,且交⊙O于點D,F是BA延長線上一點,若∠CDB=∠BFD.
(1)求證:FD是⊙O的切線;
(2)若⊙O的半徑為5,sinF=,求DF的長。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線MN表示一條鐵路,A,B是兩個城市,它們到鐵路的垂直距離分別為AA1=20km,BB1=40km,已知A1B1=80km,現要在A1,B1之間設一個中轉站P,使兩個城市到中轉站的距離之和最短,請你設計一種方案確定P點的位置,并求這個最短距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】認真閱讀下面關于三角形內外角平分線所夾的探究片段,完成所提出的問題.
探究1:如圖1,在△ABC中,O是∠ABC與∠ACB的平分線BO和CO的交點,通過分析發(fā)現∠BOC=90°+,理由如下:
∵BO和CO分別是∠ABC和∠ACB的角平分線
∴∠1=∠ABC,∠2=∠ACB
∴∠1+∠2= (∠ABC+∠ACB)
又∵∠ABC+∠ACB=180°-∠A
∴∠1+∠2= (180°∠A)=90°∠A
∴∠BOC=180°-(∠1+∠2)=180°-(90°-∠A)=90°+∠A
探究2:如圖2中,O是∠ABC與外角∠ACD的平分線BO和CO的交點,試分析∠BOC與∠A有怎樣的關系?請說明理由.
探究3:如圖3中,O是外角∠DBC與外角∠ECB的平分線BO和CO的交點,則∠BOC與∠A有怎樣的關系?(只寫結論,不需證明)
結論:
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點,若點D為BC邊的中點,點M為線段EF上一動點,則周長的最小值為______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com