在坐標(biāo)系中,已知兩點(diǎn)A(3,-2),B(―3,―2),則直線AB與x軸的位置關(guān)系是________.

答案:互相平行
解析:

分析:根據(jù)點(diǎn)A(3,-2)、B(3,-2)的縱坐標(biāo)都為-2,橫坐標(biāo)互為相反數(shù)可知點(diǎn)AB關(guān)于y軸對(duì)稱,則直線ABx軸平行.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直角坐標(biāo)系中,已知兩點(diǎn)O(0,0),A(2,0),點(diǎn)B在第一象限且△OA精英家教網(wǎng)B為正三角形,△OAB的外接圓交y軸的正半軸于點(diǎn)C,過(guò)點(diǎn)C的圓的切線交x軸于點(diǎn)D.
(1)求B,C兩點(diǎn)的坐標(biāo);
(2)求直線CD的函數(shù)解析式;
(3)設(shè)E,F(xiàn)分別是線段AB,AD上的兩個(gè)動(dòng)點(diǎn),且EF平分四邊形ABCD的周長(zhǎng).試探究:△AEF的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,已知兩點(diǎn)A(-8,3),B(-4,5)以及動(dòng)點(diǎn)C(0,n),D(m,0),則當(dāng)四邊形ABCD的周長(zhǎng)最小時(shí),比值
mn
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,已知兩點(diǎn)坐標(biāo)P1(x1,y1)P2(x2,y2)我們就可以使用兩點(diǎn)間距離公式P1P2=
(x1-x2)2+(y1-y 2)2
來(lái)求出點(diǎn)P1與點(diǎn)P2間的距離.如:已知P1(-1,2),P2(0,3),則P1P2=
(-1-0)2+(2-3)2
=
2

通過(guò)閱讀材以上材料,請(qǐng)回答下列問(wèn)題:
(1)已知點(diǎn)P1坐標(biāo)為(-1,3),點(diǎn)P2坐標(biāo)為(2,1)
①求P1P2=
13
13
;
②若點(diǎn)Q在x軸上,則△QP1P2的周長(zhǎng)最小值為
6+
13
6+
13

(2)如圖,在平面直角坐標(biāo)系中,四邊形OABC為長(zhǎng)方形,點(diǎn)A、B的坐標(biāo)分別為
(4,0)(4,3),動(dòng)點(diǎn)M、N分別從點(diǎn)O,點(diǎn)B同時(shí)出發(fā),以每秒1個(gè)單位的速度運(yùn)動(dòng),其中M點(diǎn)沿OA向終點(diǎn)A運(yùn)動(dòng),N點(diǎn)沿BC向終點(diǎn)C運(yùn)動(dòng),過(guò)點(diǎn)N作NF⊥BC交AC于F,交AO于G,連結(jié)MF.
當(dāng)兩點(diǎn)運(yùn)動(dòng)了t秒時(shí):
①直接寫(xiě)出直線AC的解析式:
y=-
3
4
x+3
y=-
3
4
x+3

②F點(diǎn)的坐標(biāo)為(
4-t
4-t
,
3
4
t
3
4
t
);(用含t的代數(shù)式表示)
③記△MFA的面積為S,求S與t的函數(shù)關(guān)系式;(0<t<4);
④當(dāng)點(diǎn)N運(yùn)動(dòng)到終點(diǎn)C點(diǎn)時(shí),在y軸上是否存在點(diǎn)E,使△EAN為等腰三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)E的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直角坐標(biāo)系中,已知兩點(diǎn)O(0,0),A(2,0),點(diǎn)B在第一象限且△OAB精英家教網(wǎng)為正三角形.△OAB的外接圓交y軸的正半軸于點(diǎn)C.
(1)點(diǎn)B的坐標(biāo)是
 
,點(diǎn)C的坐標(biāo)是
 
;
(2)過(guò)點(diǎn)C的圓的切線交x軸于點(diǎn)D,則圖中陰影部分的面積是
 
;
(3)若OH⊥AB于點(diǎn)H,點(diǎn)P在線段OH上.點(diǎn)Q在y軸的正半軸上,OQ=PH,PQ與OB交于點(diǎn)M.
①當(dāng)△OPM為等腰三角形時(shí),求點(diǎn)Q的坐標(biāo);
②探究線段OM長(zhǎng)度的最大值是多少,直接寫(xiě)出結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案