精英家教網 > 初中數學 > 題目詳情
閱讀材料,解答下列問題
例:當a>0時,如a=6則|a|=|6|=6,故此時a的絕對值是它本身
當a=0時,|a|=0,故此時a的絕對值是零
當a<0時,如a=-6則|a|=|-6|=6=-(-6),故此時a的絕對值是它的相反數
所以綜合起來一個數的絕對值要分三種情況,即|a|=
a(a>0)
0(a=0)
-a(a<0)

這種分析方法滲透了數學的分類討論思想
(1)比較大。簗-7|
 
7,|3|
 
-3;(用>,<,=填寫)
(2)請仿照例中的分類討論的方法,分析猜想|a|與-a的大小關系.
分析:此題要結合一個數的絕對值的三種情況進行分析,|a|=
a(a>0)
0(a=0)
-a(a<0)
.這種分析方法滲透了數學的分類討論思想.
解答:解:(1)|-7|=7,|3|>-3;
(2)顯然當a>0時,|a|=a>-a,
當a=0時,|a|=-a=0,
當a<0時,|a|=-a.
點評:注意絕對值的三種情況,今后在做有關絕對值的題時,要善于結合三種情況進行分析.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:閱讀理解

閱讀材料,解答下列問題.
例:當a>0時,如a=6則|a|=|6|=6,故此時a的絕對值是它本身;
當a=0時,|a|=0,故此時a的絕對值是零;
當a<0時,如a=-6則|a|=|-6|=-(-6),故此時a的絕對值是它的相反數.
∴綜合起來一個數的絕對值要分三種情況,即|a|=
a(a>0)
0(a=0)
-a(a<0)
,
這種分析方法滲透了數學的分類討論思想.
問:(1)請仿照例中的分類討論的方法,分析二次根式
a2
的各種展開的情況;
(2)猜想
a2
與|a|的大小關系.

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

閱讀材料,解答下列問題.
例:當a>0時,如a=6,則|a|=|6|=6,故此時|a|是它本身;當a=0時,|a|=0,故此時|a|是零;
當a<0時,如a=-6,則|a|=|-6|=6=-(-6),故此時|a|是它的相反數.
綜上所述,|a|可分三種情況,即|a|=
a(a>0)
0(a=0)
-a(a<0)

這種分析方法滲透了數學的分類討論思想.
問:(1)請仿照例中的分類討論的方法,分析二次根式
a2
的各種展開的情況.
(2)猜想
a2
與|a|的大小關系是
a2
 
|a|.
(3)當1<x<2時,試化簡:|x-1|+
(x-2)2

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

閱讀材料,解答下列問題.
例:當a>0時,如a=6則|a|=|6|=6,故此時a的絕對值是它本身;
當a=0時,|a|=0,故此時a的絕對值是零;
當a<0時,如a=-6則|a|=|-6|=-(-6),故此時a的絕對值是它的相反數.
∴綜合起來一個數的絕對值要分三種情況,即
|a|=
a  當a>0
0    當a=0
-a 當a<0

問:(1)這種分析方法涌透了
分類討論
分類討論
數學思想.
(2)請仿照例中的分類討論的方法,分析二次根式
a2
的各種展開的情況.
(3)猜想
a2
與|a|的大小關系.
(4)嘗試用從以上探究中得到的結論來解決下面的問題:化簡
(x-5)2
+
(x+3)2
(-3≤x≤5).

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

(12分)閱讀材料,解答下列問題.
例:當時,如,故此時的絕對值是它本身
時,,故此時的絕對值是零
時,如,故此時的絕對值是它的相反數
綜合起來一個數的絕對值要分三種情況,即

問:(1)這種分析方法涌透了                          數學思想.
(2)請仿照例中的分類討論的方法,分析二次根式的各種展開的情況.
(3)猜想的大小關系.
(4)嘗試用從以上探究中得到的結論來解決下面的問題:

查看答案和解析>>

科目:初中數學 來源:2010年遼寧省大連市第十四中學初二數學階段性檢測數學卷 題型:解答題

(12分)閱讀材料,解答下列問題.
例:當時,如,故此時的絕對值是它本身
時,,故此時的絕對值是零
時,如,故此時的絕對值是它的相反數
綜合起來一個數的絕對值要分三種情況,即

問:(1)這種分析方法涌透了                          數學思想.
(2)請仿照例中的分類討論的方法,分析二次根式的各種展開的情況.
(3)猜想的大小關系.
(4)嘗試用從以上探究中得到的結論來解決下面的問題:

查看答案和解析>>

同步練習冊答案