若等腰三角形的頂角平分線的長(zhǎng)為8cm,面積是32cm2,則它的底邊長(zhǎng)是
8
8
cm.
分析:根據(jù)等腰三角形三線合一的性質(zhì)可得三角形底邊的高等于頂角平分線的長(zhǎng),由三角形的面積S=
1
2
ah推出:a=2S÷h,據(jù)此代入數(shù)據(jù)即可求解.
解答:解:∵等腰三角形的頂角平分線的長(zhǎng)為8cm,
∴三角形底邊的高的長(zhǎng)為8cm,
∴它的底邊長(zhǎng)是:32×2÷8=8(cm).
答:它的底邊長(zhǎng)是8cm.
故答案為:8.
點(diǎn)評(píng):此題主要考查等腰三角形的性質(zhì),三角形面積的計(jì)算方法的靈活應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、我們知道一個(gè)圖形的性質(zhì)和判定之間有著密切的聯(lián)系.比如,由等腰三角形的性質(zhì)“等邊對(duì)等角”很易得到它的判定“等角對(duì)等邊”.小明在學(xué)完“等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合”性質(zhì)后,得到如下三個(gè)猜想:
(1)如果一個(gè)三角形一邊的中線和這邊上的高相互重合,則這個(gè)三角形是等腰三角形;
(2)如果一個(gè)三角形一邊的高和這邊所對(duì)的角的平分線相互重合,則這個(gè)三角形是等腰三角形;
(3)如果一個(gè)三角形一邊的中線和這邊所對(duì)的角的平分線相互重合,則這個(gè)三角形是等腰三角形.
我們運(yùn)用線段垂直平分線的性質(zhì),很易證明猜想(1)的正確性.現(xiàn)請(qǐng)你幫助小明判斷他的猜想(2)、(3)是否成立,若成立,請(qǐng)結(jié)合圖形,寫出已知、求證和證明過(guò)程;若不成立,請(qǐng)舉反例說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

若等腰三角形的頂角平分線的長(zhǎng)為8cm,面積是32cm2,則它的底邊長(zhǎng)是________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

我們知道一個(gè)圖形的性質(zhì)和判定之間有著密切的聯(lián)系.比如,由等腰三角形的性質(zhì)“等邊對(duì)等角”很易得到它的判定“等角對(duì)等邊”.小明在學(xué)完“等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合”性質(zhì)后,得到如下三個(gè)猜想:
(1)如果一個(gè)三角形一邊的中線和這邊上的高相互重合,則這個(gè)三角形是等腰三角形;
(2)如果一個(gè)三角形一邊的高和這邊所對(duì)的角的平分線相互重合,則這個(gè)三角形是等腰三角形;
(3)如果一個(gè)三角形一邊的中線和這邊所對(duì)的角的平分線相互重合,則這個(gè)三角形是等腰三角形.
我們運(yùn)用線段垂直平分線的性質(zhì),很易證明猜想(1)的正確性.現(xiàn)請(qǐng)你幫助小明判斷他的猜想(2)、(3)是否成立?若成立,請(qǐng)結(jié)合圖形,寫出已知、求證和證明過(guò)程;若不成立,請(qǐng)舉反例說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若等腰三角形的頂角平分線的長(zhǎng)為8cm,面積是32cm2,則它的底邊長(zhǎng)是______cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案