【題目】如圖,邊長(zhǎng)為8的正方形OABC的兩邊在坐標(biāo)軸上,以點(diǎn)C為頂點(diǎn)的拋物線經(jīng)過(guò)點(diǎn)A,點(diǎn)P是拋物線上點(diǎn)A、C間的一個(gè)動(dòng)點(diǎn)(含端點(diǎn)),過(guò)點(diǎn)P作PF⊥BC于點(diǎn)F,點(diǎn)D、E的坐標(biāo)分別為(0,6),(﹣4,0),連接PD,PE,DE.
(1)求拋物線的解析式;
(2)小明探究點(diǎn)P的位置是發(fā)現(xiàn):當(dāng)點(diǎn)P與點(diǎn)A或點(diǎn)C重合時(shí),PD與PF的差為定值,進(jìn)而猜想:對(duì)于任意一點(diǎn)P,PD與PF的差為定值,請(qǐng)你判定該猜想是否正確,并說(shuō)明理由;
(3)請(qǐng)直接寫出△PDE周長(zhǎng)的最大值和最小值.
【答案】(1)y=﹣x2+8;(2)正確,d=|PD﹣PF|為定值2;理由見(jiàn)解析;(3)△PDE周長(zhǎng)的最大值是2+14,最小值是2+10.
【解析】
(1)利用待定系數(shù)法求出拋物線解析式即可;
(2)首先表示出P,F點(diǎn)坐標(biāo),再利用兩點(diǎn)之間距離公式得出PD,PF的長(zhǎng),進(jìn)而求出即可;
(3)過(guò)E作EF⊥x軸,交拋物線于點(diǎn)P,求得C△PDE=ED+PE+PD=ED+PE+PF+2=ED+2+(PE+PF),當(dāng)P、E、F三點(diǎn)共線時(shí),PE+PF最;當(dāng)P與A重合時(shí),PE+PF最大;即可解答.
(1)∵邊長(zhǎng)為8的正方形OABC的兩邊在坐標(biāo)軸上,以點(diǎn)C為頂點(diǎn)的拋物線經(jīng)過(guò)點(diǎn)A,
∴C(0,8),A(﹣8,0),
設(shè)拋物線解析式為:y=ax2+c,
則,
解得:.
∴拋物線解析式為y=﹣x2+8.
(2)設(shè)P(x,﹣x2+8),則F(x,8),
則PF=8﹣(﹣x2+8)=x2.
PD2=x2+[6﹣(﹣x2+8)]2=x4+x2+4=(x2+2)2
∴PD=x2+2,
∴d=|PD﹣PF|=|x2+2﹣x2|=2
∴d=|PD﹣PF|為定值2;
(3)如圖,過(guò)點(diǎn)E作EF⊥x軸,交拋物線于點(diǎn)P,
由d=|PD﹣PF|為定值2,
得C△PDE=ED+PE+PD=ED+PE+PF+2=ED+2+(PE+PF),
又∵D(0,6),E(﹣4,0)
∴DE=.
∴C△PDE=2+2+(PE+PF),
當(dāng)PE和PF在同一直線時(shí)PE+PF最小,
得C△PDE最小值=2+2+8=2 +10.
設(shè)P為拋物線AC上異于點(diǎn)A的任意一點(diǎn),過(guò)P作PM∥x軸,交AB于點(diǎn)M,連接ME,如圖2.
由于E是AO的中點(diǎn),易證得ME≥PE(當(dāng)點(diǎn)P接近點(diǎn)A時(shí),在△PME中,顯然∠MPE是鈍角,故ME≥PE,與A重合時(shí),等號(hào)成立),而ME≤AE+AM,
所以PE≤AE+AM.
所以當(dāng)P與A重合時(shí),PE+PF最大,
AE=8﹣4=4,PD==10.
得C△PDE最大值=2+4+10=2+14.
綜上所述,△PDE周長(zhǎng)的最大值是2+14,最小值是2+10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程mx2﹣2x﹣1=0有兩個(gè)實(shí)數(shù)根x1,x2.
(1)求m的取值范圍;
(2)當(dāng)x12+x22=﹣6x1x2時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線,AG∥DB交CB的延長(zhǎng)線于G.若四邊形BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在測(cè)量“河流寬度”的綜合與實(shí)踐活動(dòng)中,小李同學(xué)設(shè)計(jì)的方案及測(cè)量數(shù)據(jù)如下:在河對(duì)岸邊選定一個(gè)目標(biāo)點(diǎn)A,在近岸取點(diǎn)B,C,D (點(diǎn)B,C,D在同一條直線上),AB⊥BD,∠ACB=45°,CD=20米,且.若測(cè)得∠ADB=25°,請(qǐng)你幫助小李求河的寬度AB.(sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,結(jié)果精確到0.1米).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC為邊向外作正方形,其面積分別為S1、S2、S3,若S1=2,S3=4,則S2的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“低碳生活,綠色出行”是我們倡導(dǎo)的一種生活方式,某校為了解學(xué)生對(duì)共享單車的使用情況,隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,并將這次調(diào)查的結(jié)果繪制了以下兩幅不完整的統(tǒng)計(jì)圖.
根據(jù)所給信息,解答下列問(wèn)題:
(1)m= ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)這次調(diào)查結(jié)果的眾數(shù)是 ;
(4)已知全校共3000名學(xué)生,請(qǐng)估計(jì)“經(jīng)常使用”共享單車的學(xué)生大約有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,點(diǎn)C是優(yōu)弧ACB的中點(diǎn),D、E分別是OA、OB上的點(diǎn),且AD=BE,弦CM、CN分別過(guò)點(diǎn)D、E.
(1)求證:CD=CE.
(2)求證:=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,用籬笆靠墻圍成矩形花圍ABCD,墻可利用的最大長(zhǎng)度為15米,一面利用舊墻,其余三面用籬笆圍成,籬笆總長(zhǎng)為24米.
(1)若圍成的花圃面積為40米2時(shí),求BC的長(zhǎng);
(2)如圖2若計(jì)劃在花圃中間用一道隔成兩個(gè)小矩形,且圍成的花圃面積為50米2,請(qǐng)你判斷能否成功圍成花圃,如果能,求BC的長(zhǎng)?如果不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明參加某個(gè)智力競(jìng)答節(jié)目,答對(duì)最后兩道單選題就順利通關(guān).第一道單選題有3個(gè)選項(xiàng),第二道單選題有4個(gè)選項(xiàng),這兩道題小明都不會(huì),不過(guò)小明還有一個(gè)“求助”沒(méi)有用(使用“求助”可以讓主持人去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).
(1)如果小明第一題不使用“求助”,那么小明答對(duì)第一道題的概率是 .
(2)如果小明將“求助”留在第二題使用,請(qǐng)用樹(shù)狀圖或者列表來(lái)分析小明順利通關(guān)的概率.
(3)從概率的角度分析,你建議小明在第幾題使用“求助”.(直接寫出答案)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com